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Abstract. Increasing prevalence of spacecraft prox-

imity operations necessitates highly accurate relative nav-

igation solutions. However, many current applications are

streamlined for operating about a fully known and coorper-

ating spacecraft, which restricts generalized applications

and reduces operational lifespan. This paper presents a

novel Spacecraft Localization Pipeline, intended to detect

and appropriately classify both known and previously un-

seen spacecraft within a monocular image. The pipeline

is built around a convolutional neural network leveraging

recent work in computer vision addressing unknown ob-

ject detection. Simple metrics for associating spacecraft

between images in a time-series are also proposed and

analyzed, creating a complete pre-processing pipeline for

higher level tasks.

Introduction. Growing interest in space applications

ranging from debris removal1 to in-space servicing, assem-

bly, and manufacturing (ISAM)2,3 engenders the need for

robust, autonomous spacecraft proximity operations. The

problem of a non-cooperative target spacecraft – wherein

the target provides no state information to the approach-

ing spacecraft – drives the requirement for high-fidelity

relative navigation solutions.

Due to restrictive size, weight, power, and cost (SWaP-

C) constraints for small spacecraft platforms, many nav-

igation suites employ monocular cameras coupled with

computer vision algorithms. A growing body of work4

employs convolutional neural networks (CNNs) to replace

conventional image processing techniques in pose (posi-

tion and orientation) estimation pipelines for relative nav-

igation. CNNs exhibit more robustness to camera effects

from the harsh space environment and have proven to be

highly accurate object detectors. However, most of the

available solutions are developed specifically for space-

craft known a priori, such that CNNs may be trained in

advance using a known model. This severely limits op-

erational life expectancy and restricts generalizability in

the presence of previously unseen spacecraft or assets in

a state of damage or dysfunction that require on-orbit

repair services.

Aiming to bridge this gap, this work proposes the

Spacecraft Localization Pipeline (SLP), depicted in Fig 1.

The SLP is designed to ingest a time-series of monocu-

lar images and produce bounding boxes and classifica-

tion labels for both known and unknown spacecraft in

each frame, as well as associate each spacecraft instance

from frame-to-frame. In the greater context of informa-

tion fusion, specifically the Joint Directors of Labora-

tories (JDL) model,5 the SLP serves the function of a

Level 0 task, source pre-processing. The results from the

SLP may thus be used in higher level tasks such as pose

estimation or tracking. The architecture is designed to

be lightweight for deployment on compute-limited, flight-

grade hardware.

The SLP is comprised of two key components: the

Spacecraft Localization Network (SLN) and the Space-

craft Association Module (SAM). The SLN is an object

detection CNN designed for open world object detection

and optimized for space application using several innova-

tive loss terms. The focus of this work is the design and

operation of the SLN. The SAM is a collection of two inde-

pendent metrics devised to associate spacecraft between

images. These metrics are presented to analyze feasibil-

ity as a final layer of processing on the SLN outputs in a

complete pipeline.

At a high level, the SLP ingests a single monocular

image, assumed to be part of a time series taken from

one spacecraft approaching one or multiple other space-

craft. The SLN extracts known and unknown spacecraft

from the image, classifies each appropriately, and returns

appropriate bounding boxes and labels. The SAM then

uses feature-based and spatial-based metrics to associate

each detected spacecraft with those in previous images.

The results may be output for use in higher-level tasks,

as well as fed back into the SAM for association on the

subsequent image.

The remainder of this paper is organized as follows.

First, a literature review is provided for context, to show

where the SLP fits into the broader context of spacecraft

relative navigation. Then, the key design considerations

of the SLP are covered in detail from both theoretical

and practical standpoints. Results for each component of

the design are presented with analysis, followed by closing

remarks and suggestions for future work. Note that many

of the results presented here are sourced from the primary

author’s thesis.6

Related Works. As a major motivation, a review of

spacecraft pose estimation–specifically solutions employ-

ing monocular imagery – is first covered, building up to

the role the SLP hopes to fulfill in this field. Coverage of

open world object detection follows, as emerging work in

that field lays the foundation for the SLN.

Spacecraft Pose Estimation. This work is largely in-

spired by the rapidly expanding field of spacecraft rela-

tive pose estimation. Due to the broad nature of this field,

the following discussion is limited to pose estimation of

an uncooperative spacecraft using a monocular camera.

Earlier works in this area employed traditional computer

vision techniques, ranging from Canny edge detection7
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Figure 1. Spacecraft Localization Pipeline.

to the Sobel operator paired with the Hough transform.8

These methods may be coupled with Perspective-n-Point

(PnP)9 algorithms to extract 3D locations of keypoints in

the 2D image, thus recovering a pose solution. However,

harsh lighting conditions and lens effects in space can sig-

nificantly degrade these traditional solutions, leading to

the rise of CNNs in spacecraft pose estimation.

CNNs were first employed for spacecraft pose estima-

tion by classifying a spacecraft according to a discretized

pose space.10 This led to the Satellite Pose Estimation

Challenge (SPEC2019),11 in which all top competitors in-

corporated CNNs into their solution methods, either by

direct pose regression12 or a two-fold CNN approach.13

Generally, the two-fold approach involved an object de-

tection network coupled with a regression network, which

regressed known keypoints for use in PnP or a similar

algorithm to recover a static pose solution.

The two-fold approach matured in following years,

leading to CNN-based pose estimation pipelines includ-

ing filters for recursive estimation.14 Tightly-coupled

architectures regressed the known keypoints directly,15

while loosely-coupled designs regressed the result from

a static pose solver.16,17 Later competitions, such as

SPEC2021,18 have seen continued growth in known space-

craft pose estimation pipelines. However, these methods

all rely on known features of the target spacecraft, making

unknown spacecraft pose estimation a distinct problem

requiring different approaches.

Many proposed methods employ sensors beyond the ca-

pabilities of a monocular camera to leverage depth infor-

mation to solve this problem. Some use the depth infor-

mation available from stereo cameras,19 where others use

a Time-of-Flight (ToF) camera.20 Others still move to-

wards monocular-based solutions, but rely on single-beam

LIDAR for depth measurements.21,22 In an intriguing

move towards using only monocular imagery, Park and

D’Amico23 proposed a novel CNN to approximate the

3D shape of an unknown spacecraft and simultaneously

estimate pose.

Although this paper does not directly address pose esti-

mation, the above discussion provides motivation for the

SLP. Much of the unknown spacecraft pose estimation

work above implictly assumes the spacecraft occupies a

majority of a given image, so additional spacecraft or

background noise are largely unaccounted for. The SLP is

designed as a pre-processing pipeline to detect and classify

each spacecraft in the field of view, such that each may

be processed downstream by the appropriate higher-level

algorithm.

Open World Object Detection. The design of the SLN

rests on emerging work in CNNs dealing with Open

World Object Detection (OWOD). A formal definition

for OWOD was originally proposed by Joseph et al.24

and builds on traditional object detection with the added

objective of detecting and classifying previously unseen

objects.

A number of solution methods employ CNNs with a

class-agnostic region proposal network (RPN) to gener-

ate unknown proposals. Joseph et al. present an ap-

proach dubbed ORE,24 which uses an energy function to

augment classification and a novel clustering mechanism

to enforce distinct grouping among classes. Liang et al.’s

Unknown Sniffer (UnSniffer)25 relies on their Generalized

Object Confidence Score to improve unknown extraction,

alongside an energy suppression scheme to better dis-

tinguish unknowns from background. Spatial Temporal

Unknown Distillation (STUD)26 aims to exploit the rich

time and space information available in videos. STUD

constructs “unknown counterparts” to each known class,

which regularizes the decision boundary between known
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and unknown classes.

Outside of RPN-based methods, an interesting method

called RandBox27 uses random proposals to negate the

inherent bias of RPNs to favor object proposals that

resemble known classes. After known object classifica-

tion, a proposed matching score sweeps the remaining

proposals for possible unknowns. Fang et al.’s MEPU

framework leverages the diversity of foreground objects

compared to standard backgrounds and characterizes un-

knowns based on the frequency of appearance in training.

A secondary network is also trained using a proposed “lo-

calization quality” metric to extract additional unknowns.

OW-DETR,28 and extension on ORE, uses a transformer-

based detector to make better use of the contextual in-

formation surrounding unknown objects. An attention-

driven scheme enables single-stage detection, and thereby

improved generalization. The pseudo-labeled unknowns

are provided during training with an unknown label in con-

junction with a “foreground objectness” branch to trans-

fer knowledge of known classes, such as edge shapes, to

the unknown classes.

These methods provide context for the wide ranging

approaches to the OWOD problem that have emerged

in the past five years. The SLN design is based on an

OWOD approach for robustness and generalization con-

siderations. Another possible approach could be creating

a generic spacecraft detector coupled with an “unknown-

aware” classifier to separate known and unknown space-

craft classes. However, in the interest of detecting a wider

range of spacecraft than may be available for synthetic im-

agery, the SLN is instead built on an OWOD framework.

Spacecraft Localization Network. The SLN is a

CNN-based computer vision algorithm intended to assign

bounding boxes to any spacecraft in a provided monocular

image. If a given spacecraft is known, it will be classified

according to its known class; otherwise, the spacecraft

will be labeled unknown.

The SLN architecture leverages a Faster R-CNN29

baseline with a MobileNetV330 backbone. While other

few-/single-shot detectors such as YOLOv831 are popu-

lar for mobile object detection, Faster R-CNN was se-

lected largely for its Region Proposal Network (RPN).

The RPN takes the feature maps output by the backbone

to extract object proposals with associated “objectness”

scores, which indicate the predicted likelihood that the

proposal belongs to a known class. Next, pooling and

fully connected layers compute a feature vector–a fixed-

length, one-dimensional representation–corresponding to

each proposal with an objectness score above a specified

threshold. The feature vectors are then processed by two

Region of Interest (RoI) heads–the regression head and

the classification head–for prediction. These heads are

fully connected layers that produce a bounding box and

logits for each class (including the implicit background

class) for a given proposal. This means a single proposal

will yield C +1 (number of known spacecraft classes plus

background class) bounding boxes with associated proba-

bilities. The final output for each proposal is the box and

probability corresponding to the highest scoring class.

Although a vanilla Faster R-CNN network generally

provides a sufficient solution for known spacecraft de-

tection, it fails to adequately address previously unseen

spacecraft. This is largely due to overconfidence that the

unseen spacecraft belongs to a known class or discarding

the unseen spacecraft as background. However, several

clever modifications enable the SLN to detect and appro-

priately classify unknown spacecraft.

These modifications are largely inspired by the open

world object detector ORE.24 The simple heuristic for

pseudo-labeling unknowns is easily implementable and in-

tuitive for space application, where images are assumed to

contain limited unknowns (compared to terrestrial appli-

cations where many unknowns are present, e.g., a street

view). The feature vector clustering is also appealing for

distinguishing spacecraft from frame to frame. Several

key design changes and additions were made to accommo-

date artifacts of operating in the complex space domain.

Subsequent sections describe each component of the SLN

in detail.

Unknown Proposal Extraction. Extracting unknown

proposals is a crucial first step addressing the unknown

spacecraft detection problem. This is where the RPN is

a key enabler. By gathering all high-objectness proposals

produced by the RPN and removing those that overlap

known spacecraft, the remaining proposals form a set of

potential unknown classes. These proposals are simply

pseudo-labeled as unknowns for further evaluation, using

the objectness scores as the probability that the proposal

belongs to the unknown class. This task is accomplished

by the intuitively-named High-Objectness Proposal Ex-

tractor, which works alongside the vanilla Faster R-CNN

head. The results from each are concatenated and pro-

cessed through non-maximum suppression (NMS), as de-

picted in Fig. 2.

Figure 2. Unknown proposal extraction using high-

objectness proposals.

NMS, depicted in Fig. 3, compares boxes that overlap

by a specified margin. For boxes of the same class, NMS

returns the highest-scoring box, as seen in the top exam-

ple of Fig. 3. All unknown proposals are considered the

same class for this process. For cases of mixed classes, as

in the bottom example, NMS is customized to return the

box with the highest known class score. This effectively

already happens inside the vanilla Faster R-CNN head–

here, the process merely “sweeps” the remaining propos-

als with low known-class predictions. In the event no
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known classes exist for a set of overlapping boxes (i.e.,

only unknown predictions), the box with the highest ob-

jectness score is selected.

Figure 3. Non-maximum suppression with mixed

known and unknown spacecraft.

It is worth noting that other networks use some form

of objectness score as well. YOLO,32 for example, uses a

similar objectness metric using the overlap of some anchor

and a known class. While this sounds strikingly similar

to the RPN implementation, Dhamija et al.33 show that

YOLO performs quite poorly compared to Faster R-CNN

on the open set detection problem. Open set detection is

a close cousin of open world object detection which gener-

ally aims to address overconfident in-distribution predic-

tions on out-of-distribution objects. YOLO’s poor per-

formance in this domain eliminated it as a candidate for

the SLN architecture.

Energy-Bounded Classification Gating. The resulting

known and unknown predictions are subsequently vetted

through an Energy-Bounded Classification Gating. This

procedure is intended to correct misclassified predictions

using an energy score.

As was previously alluded to, vanilla Faster R-CNN of-

ten suffers from overconfidence, which generally refers to

assigning known class labels to non-class objects. Sparing

the theoretical analysis, it may be shown that all ReLU

networks are prone to overconfidence issues.34 ReLU net-

works are CNNs which use the rectified linear unit acti-

vation function, σ(x) = max{0, x}, such as most object

detectors.

Liu et al.35 present several key insights to mitigate

overconfidence based on energy scores. Leveraging early

work in energy-based models36 used for classification, it

is first shown that the so-called free energy of a proposal

x for a given classifier f is defined by the following:

E(x; f) ≜ −T · log
C+1∑
i=0

ezi/T (1)

where T is a temperature parameter, C is the number

of known classes, and zi is the class logits value for the i-th

known class. Logits are the raw, unnormalized output of a

classifier, and may be converted to standard probabilities

using the softmax activation function.

This free energy score may be used to distinguish in-

distribution (ID) data from out-of-distribution (OOD)

data (i.e., known vs unknown spacecraft, respectively).

In fact, Liu et al. show that the cross entropy loss used

to train most classifiers actually decreases the energy of

ID data. This gives rise to a simple ID-vs-OOD detection

metric:

g(x; τ, f) =

{
0 (OOD) if− E(x; f) ≤ τ

1 (ID) if− E(x; f) > τ
(2)

where τ is a tunable energy threshold and f represents

the classification head. The negative energy, −E(x; f),

is used to align with standard convention, where larger

negative values indicate higher ID probability.

Liu et al. finally suggest a novel loss function to enforce

greater separation between ID and OOD energy values.

This Energy-Bounded Classification Loss is defined as fol-

lows:

Lenergy ≜

↑ID proposal neg. energy︷ ︸︸ ︷∑
k∈K

(max(0, E(xk)−mid))
2 + (3)

∑
k/∈K

(max(0,mood − E(xk)))
2

︸ ︷︷ ︸
↓OOD proposal neg. energy

where mid and mood define desired energy bounds and

K is the set of known spacecraft classes. Recall, negative

energy should be high for ID proposals and low for OOD

proposals. The first term penalizes ID proposals with neg-

ative energy below the bound −mid. Conversely, the sec-

ond term penalizes OOD proposals with negative energy

above the bound −mood. This may also be thought of as

penalizing proposals with energy E(x) ∈ [mid,mood].

Following these insights, Eq. 2 (with free energy as de-

fined in Eq. 1) is employed as a drop-in OOD detector

for the SLN. Notice that this requires no modifications

to the model–this energy discriminator may be applied to

any pre-trained classification model. However, in order to

better leverage this capability, the energy-bounded loss is

also applied during training to enforce greater distinction

between known and unknown spacecraft.

Practically speaking, these additions enable a gating

metric, which essentially vets the predicted labels from

softmax scores using a judiciously chosen energy threshold

τ . If the negative energy is below the chosen threshold for

a predicted known spacecraft (ID), it may be relabeled as

unknown (OOD).

Contrastive Clustering Loss. One final modification to

the network lends itself back to ORE, the driving inspi-

ration behind the SLN. A key component of ORE is a

novel Contrastive Clustering loss, which encourages fea-

ture vectors of each known class to “cluster” together into
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distinct groups in the latent space. The intent is to cre-

ate a clear distinction between known classes by creating

these clusters. This is depicted in Fig. 4.

Figure 4. Latent space with Contrastive Clustering.

Contrastive clustering loss is formulated as follows:

Lclstr(fc) ≜
C∑
i=1

ℓ(fc,pi), where, (4)

ℓ(fc,pi) ≜

{
D(fc,pi) i = c

max{0,∆−D(fc,pi)} otherwise

where Lclstr is the total loss, fc is a feature vector of

known class c, pi is a prototype feature vector of known

class i, D is any distance function, and ∆ defines some

threshold for the acceptable distance between dissimi-

lar objects. The ℓ term is posed as a hinge embedded

loss, which penalizes two cases: (1) when objects of the

same class are far apart, and (2) when objects of differing

classes are closer than the established threshold ∆. The

SLN implementation uses the simple Euclidean distance

for the distance function, D := ∥fc − pi∥2.
The prototype vectors are initially generated during

training by averaging all feature vectors for a known class

collected over a period of “burn-in” iterations. To account

for maturing network weights, prototypes are periodically

updated as a weighted average of the current prototype

and a set number of stored feature vectors:

pc ← ξpc + (1− ξ)
1

nc

nc∑
n=0

fc,n (5)

This clustering is particularly useful for the proposed

appearance-based association metric, which uses feature

vectors to associate spacecraft between frames. Grouping

feature vectors is intended to create greater distinction

between each known spacecraft class.

Negative Samples & Hard Negative Mining. Two mea-

sures were also implemented at training time to further

mitigate overconfidence issues: negative sample training

and hard negative mining. Both methods are appealing

as they may be implemented with any off-the-shelf object

detector with no network modifications.

Negative sample training37 aims to mitigate false pos-

itives due to background artifacts. Negative samples are

simply images of distracting backgrounds without any

ground truth labels. By supplying these images during

training, the classification loss penalizes known class pre-

dictions on the negative samples, thus encouraging the

network to ignore those backgrounds. In the spacecraft

RPO context, negative samples generally include plain

earth background. Earth images are readily available

alongside existing synthetic training data, making neg-

ative sample training a natural addition to the overcon-

fidence mitigation scheme. Some samples are shown in

Fig. 5.

Figure 5. Example negative sample images.

Hard negative mining38 takes this a step further by pro-

viding images with labels on particular distractors. Min-

ing involves providing negative samples with ground truth

data (bounding boxes and labels) specifying the hard neg-

atives as null detections. Unfortunately, this labeled im-

agery is often not readily available.

In spacecraft detection, unknown spacecraft may be

considered hard negatives, since they are likely to re-

sult in high-confidence in-distribution predictions. How-

ever, many publicly available datasets like URSO,39

SPEED+,40 and recently published SPEED-UE-Cube41

do not inherently provide ground truth bounding box

information, so some labeling process is still required.

This is where the SatelliteDataset42 provides utility. The

dataset is drawn from a range of largely synthetic and

some real images of spacecraft, all with ground truth

bounding box data. Fig. 6 shows some sample images.

(a) Real image (b) Multiple spacecraft

(c) Artist rendering (d) Unrealistic rendering

Figure 6. Sample images from the SatelliteDataset.

It is important to note that many of the synthetic im-
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ages are simple artist renderings, typically created for

demonstration rather than realism. While many of these

may seem unrealistic, for the purposes of the SLN, this is

actually ideal. These negative samples help the network

learn that spacecraft instances, or even merely instances

of distinct, inorganic shapes and features, need not always

belong to the known classes of spacecraft.

This raises the concern that this will train the detec-

tor to ignore previously unseen spacecraft. However, the

RPN will still learn to extract the distinct spacecraft fea-

tures. This process merely encourages the known space-

craft classifier to discard these proposals, which are later

recovered during unknown pseudo-labeling. In fact, hard

negative mining contributes greatly to contrastive clus-

tering and energy-bounded training. By providing hard

negatives during training, the network learns to penal-

ize unknown spacecraft feature vectors that are near the

known class clusters. Similarly, the energy-bounded loss

penalizes energy values of hard negatives that are outside

of the desired threshold.

Spacecraft Association Module. While the SLN

detects spacecraft instances in individual frames, the task

still remains to associate each spacecraft between frames.

To this end, two metrics are proposed: a spatial-based

metric and an appearance-based metric, collectively re-

ferred to as the SAM. The SAM effectively serves to refine

measurements from the SLN before handling by higher

level tasks.

Since the SLP is intended for near-range RPO ap-

proaches, these metrics largely rest on the assumption

that spacecraft locations and attitudes will not change

drastically between frames. While this may not be true

for every image, it is a reasonable assumption over the

course of an entire sequence of images. This two-fold ap-

proach is also designed to provide resilience against con-

ditions that may compromise these assumptions.

During operations, the SAM would initialize spacecraft

instances at their first appearance. In subsequent frames,

spacecraft would be correlated to previous instances, re-

gardless of classification label from the SLN, thus main-

taining a sort of state history for each spacecraft. This

feedback loop is seen in the lower right corner of Fig. 1.

As the scope of this work is focused on the development

of the SLN, the SAM is not deployed in-the-loop. Rather,

both association metrics are detailed and representative

results are presented to display their efficacy.

Spatial-Based Metric. The spatial-based metric aims

to correlate spacecraft instances based on bounding box

locations. Again, assuming position will not change dras-

tically between frames, this metric searches for relatively

similar bounding boxes between each frame. This similar-

ity is determined using Complete Intersection over Union

(CIoU) loss.43 Traditional IoU loss is defined as:

LIoU ≜ 1− IoU, IoU =
|A ∩B|
|A ∪B| (6)

where A and B each represent a bounding box. IoU

ranges between 0 and 1, where 1 indicates perfectly over-

lap and 0 indicates no overlap; therefore, greater overlap

decreases IoU loss. CIoU loss extends this basic definition

to account for the centroids and shapes of the bounding

boxes as well. CIoU is written as follows:

LCIoU ≜ 1− IoU +
d2

c2
+ αν, where (7)

ν =
4

π2
(arctan

w1

h1
− arctan

w2

h2
)2, α =

ν

(1− IoU) + ν

The d2

c2
term penalizes separation by accounting for the

difference between centroids, d, and the distance between

the furthest corners, c, as depicted in Fig. 7. The αν term

penalizes differences in aspect ratio, where ν compares

consistency and α is a design parameter.

Figure 7. CIoU Loss visualization of displacement

penalty.

Thus, under the previous assumptions, spacecraft may

be correlated by selecting the candidate bounding box

(from the previous frame) that minimizes CIoU loss.

Appearance-Based Metric. The appearance-based met-

ric uses visual features, represented by the intermediate

feature vectors from the SLN, to correlate spacecraft. In

line with the assumptions above, spacecraft appearances

should vary minimally from image to image, manifesting

in similar feature vectors. Choosing the candidates that

minimize the distances to each feature vector in the cur-

rent image thus enables correlation by appearance. The

Euclidean distance is used to mirror the contrastive clus-

tering loss:

D(fcandi
, fcurrj ) ≜ ∥fcandi

− fcurrj )∥2 (8)

Contrastive clustering is particularly useful for this

metric. Since feature vectors of known classes will be

clustered in the latent space across a broad range of ap-

pearances, this distance metric offers a simple association

criterion. This provides additional resilience in case the

assumption that appearances will be similar is invalid for

part of an image sequence.

Also, though unknown spacecraft are not clustered,

hard negatives serve to increase the distance from the

known classes. Coupled with the natural grouping of fea-

ture vectors among individual classes, and assisted by the

assumption above, this still offers a simple heuristic for

association between images.
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Results. Two networks were trained to compare re-

sults: a vanilla Faster R-CNN model and the SLN. Both

are based on the torchvision implementation found in Py-

Torch.44 Each was trained for 100 epochs using a step

learning rate scheduler.

Since this work stems from previous pose estimation

work by Kaki et al.,16 the same Cygnus spacecraft was

used as the single known class for testing. The recycled

training dataset comprises over 8,000 synthetically gen-

erated images of Cygnus with various effects intended to

represent those observed in real space imagery.45 Aug-

mentations from the Albumentations library46 were also

randomly applied with 0.2 probability for additional ro-

bustness in training.

For testing, a spread of SPEED+ Tango images and a

sequence of SPEED-UE-Cube trajectory images are used.

As these images do not contain ground truth bounding

boxes, additional test images of Cygnus and Tango in ran-

dom orientations as well as a simulated RPO trajectory

were produced in-house and used to evaluate the SAM

metrics.

(a) Softmax Probability Histogram

(b) Negative Energy Histogram

Figure 8. Before including energy-bounded loss.

Energy-Bounded Training Results. First, the impact of

energy-bounded loss on softmax probabilities and energy

scores is examined. Fig. 8 displays the results before in-

cluding energy-bounded loss during training. Interest-

ingly, the overconfidence inherent in ReLU networks man-

ifests very clearly in the softmax probability scores. Al-

most all unknown spacecraft are classified as the known

Cygnus class with confidence greater than 0.5, with a vast

majority being incorrectly classified with greater than 0.9

confidence. A drop-in energy-bounded classifier proves

much more effective at distinguishing the unknown space-

craft from Cygnus, without any changes to the model it-

self. However, there is still significant overlap that war-

rants further improvement.

Fig. 9 demonstrates the impact of incorporating

energy-bounded loss. As intended, the unknown space-

craft is much more distinguishable from Cygnus by ob-

serving energy scores alone. The loss successfully pushes

the scores for both the unknown and Cygnus classes be-

yond the desired bounds with minimal leakage. By set-

ting a gating threshold between these bounds (e.g., energy

score of 12), an energy-based gating mechanism would

correctly discriminate almost all samples appropriately.

This would satisfactorily mitigate misclassification using

softmax probabilities, which are still largely overconfident

for uknown spacecraft.

(a) Softmax Probability Histogram

(b) Negative Energy Histogram

Figure 9. After including energy-bounded loss.

Contrastive Clustering Results. To explore the impacts

of contrastive clustering loss, the 1024-dimensional fea-

ture space is visualized in the 2-dimensional space using t-
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distributed Stochastic Neighbor Embedding, or t-SNE.47

This method essentially solves an optimization problem

to minimize the difference between the joint probabilities

of the high-dimensional data and a low-dimensional em-

bedding.

Fig. 10 shows the t-SNE embedding of Cygnus feature

vectors before and after implementing contrastive clus-

tering loss. The tight grouping after including clustering

loss, compared to the spread produced before, indicates

the efficacy of clustering loss on a single class.

Figure 10. Comparison of Cygnus feature vectors

before and after contrastive clustering loss.

Fig. 11 shows the t-SNE plot for the vanilla model ex-

posed to Cygnus, Tango, and CubeSat images. While

some inherent grouping occurs among each individual

class, the groups are nearly co-located and overlap at the

boundaries. This renders the SAM’s spatial metric insuf-

ficient for distinguishing between spacecraft classes.

Figure 11. t-SNE plot of feature vectors before con-

trastive clustering loss (vanilla model).

Finally, Fig. 12 demonstrates the impact of incorpo-

rating contrastive clustering loss. The Cygnus feature

vectors are clearly distinct from the bulk of the unknown

predictions and form a much tighter cluster. Interest-

ingly, the Cygnus cluster does not center around the pro-

totype vector produced at the end of training, which is

likely a function of the t-SNE solution. This indicates

that the prototype vector may be effective when imple-

menting clustering loss during training, but may not be

well generalized outside of the training set. However,

the neighborhood surrounding the prototype is still domi-

nated by Cygnus feature vectors, which is encouraging for

the SAM’s appearance-based metric. Note that the un-

known classes are still nearly co-located and more loosely

grouped, as the specific unknown classes are unavailable

for inclusion in clustering loss during training by defini-

tion.

Figure 12. Feature vectors from SLN trained with

contrastive clustering loss.

The influence of hard negatives in both the energy-

bounded and contrastive clustering losses can not be un-

derstated. Without hard negatives serving as pseudo-

unknown spacecraft, these loss terms only act on the

known classes, with no impact on the unknown classes

presented in testing. Consequently, the desired clus-

tering and energy-bounded objectives are achieved, but

unknown samples are largely mixed in with the known

classes. This was observed during ablation testing when

removing hard negatives from the training set. Even

though hard negatives were incorporated to reduce over-

confidence, they prove crucial to the success of these new

loss terms.

SLN Performance. To evaluate the performance of the

SLN, a few metrics must be introduced. Standard IoU,

as introduced previously, is used to evaluate bounding

box accuracy. To predict classification accuracy, the stan-

dard measures of precision, recall, and F1 score are used.

These quantify true positives (TP), false positives (FP),

and false negatives (FN) in various ways to highlight dif-

ferent aspects of performance. Precision, for example,

quantifies the likelihood a detection belongs to the pre-

dicted class, and is useful when FPs are an important

consideration. Recall quantifies the sensitivity to detect

all spacecraft occurrences, and is useful when FNs are

deemed important. F1 score is a harmonic mean of pre-

cision and recall, and is a useful blend of both metrics.

Each is defined in Eqs. 9-11 below. Note that all three
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metrics range between 0 and 1, with 1 being a perfect

score.

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1 Score =
TP

TP + 0.5(FP + FN)
(11)

Starting off, Table 1 shows the results of the vanilla

model when evaluated on the simulated Cygnus and

Tango RPO trajectory. To better differentiate perfor-

mance, results are presented separately for each class as

well as averaged to provide insight on general SLN per-

formance. Despite impressive performance on the trained

Cygnus class, the vanilla model possesses no inherent abil-

ity to detect unknowns, evident in the complete lack of

Tango predictions. These results provide a baseline for

Cygnus results to evaluate any degradation due to the

changes that compose the SLN.

Table 1. Vanilla model performance on Cygnus and

Tango RPO trajectory.

Precision Recall F1 IoU

Cygnus 1.00 1.00 1.00 0.889

Tango 0.00 0.00 0.00 -

Weighted Avg. - - - -

Table 2 shows the SLN results when evaluated on the

same trajectory images. Cygnus results only see minimal

changes in the performance metrics, indicating no degra-

dation in baseline performance due to the SLN modifi-

cations. The Tango results indicate that 93% of Tango

predictions were actually Tango and that the SLN cor-

rectly detected 90% of Tango occurrences. IoU is remark-

ably worse for Tango compared to Cygnus, but this is to

be expected. Unknown proposals–Tango, in this case–

come from the RPN, which only learns to regress pre-

dicted bounding boxes based on known classes presented

at training time. As a result, the IoU is anticipated to

be lower for any unknown class compared to the known

classes.

Table 2. SLN performance on Cygnus and Tango

RPO trajectory.

Precision Recall F1 IoU

Cygnus 1.00 1.00 1.00 0.906

Tango 0.93 0.90 0.91 0.525

Weighted Avg. 0.97 0.95 0.96 0.726

Fig. 13 shows representative SLN predictions on the

trajectory test set. For these and future images, yellow

boxes indicate Cygnus predictions, green boxes indicate

the highest scoring unknown predictions, and red boxes

indicate other unknown predictions. The top images

showcase the SLN performing as desired. The bottom two

images demonstrate typical failure cases of merged space-

craft predictions (left) and missed unknown detections

(right), which result in the lower recall scores for Tango

compared to Cygnus. Another miss case involved mul-

tiple unknown detections for a single instance of Tango,

which contributes to the lower precision values.

Figure 13. Satisfactory (top) and degraded (bot-

tom) SLN predictions on the RPO trajectory.

Next, Table 3 shows the results when the SLN is eval-

uated against randomized images of Cygnus and Tango

during RPO. The results are similar to those for the RPO

trajectory. The Cygnus IoU drops slightly, which is gen-

erally expected as the regression loss now contends with

additional loss terms, so prediction may be slightly less

optimized for bounding box regression. However, this

may also be due to standard performance variation, as

the Cygnus IoU is slightly improved in the RPO results.

Table 3. SLN performance on randomized Cygnus

and Tango RPO images.

Precision Recall F1 IoU

Cygnus 1.00 0.99 0.99 0.873

Tango 0.96 0.86 0.91 0.633

Weighted Avg. 0.98 0.93 0.95 0.762

Finally, Table 4 shows the classification statistics for

the SLN tested on the SPEED+ and SPEED-UE-Cube

images. IoU is not reported since ground truth boxes

are unavailable for these test sets. As before, the SLN

performs well on the Tango (SPEED+) images, with ev-

ery instance of Tango being properly detected. How-

ever, performance is noticeably degraded on the CubeSat

(SPEED-UE-Cube) images. All CubeSat instances are

detected, but there are also a high number of FPs. Man-

ual observation revealed that most FPs may be attributed
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to background artifacts, as well as some duplicate predic-

tions that are not appropriately filtered out.

Table 4. SLN performance on individual unknown

spacecraft.

Precision Recall F1 IoU

Tango 0.95 1.00 0.97 -

CubeSat 0.75 1.00 0.85 -

Figs. 14 and 15 show sample SLN predictions on as-

sorted SPEED+ and SPEED-UE-Cube images, respec-

tively. In each, the top images show successful predictions

with generally accurate bounding boxes and appropriate

classifications. False positives due to background arti-

facts (bottom-left of both figures) were the largest factor

in the degraded performance metrics on these test sets.

For Tango, spacecraft components in close range (Fig. 14

bottom-right) also generated false positives in some cases.

Greatly oversized bounding boxes (Fig. 15 bottom-right)

also appeared in both test sets. While these do not im-

pact precision or recall, they could have notable impact

on IoU measures. Overall, it is important to note that

all detected spacecraft instances are correctly labeled as

unknowns, with no FPs for Cygnus in these test sets.

Figure 14. Satisfactory SLN predictions on the

SPEED+ test set.

Figure 15. Satisfactory SLN predictions on the

CubeSat test set.

SAM Performance. Although the SAM was not imple-

mented in-the-loop for this work, the metrics were eval-

uated to determine the efficacy of the individual metrics.

To accomplish this, each prediction in a given image is

compared against the predictions in the previous image.

This effectively creates a “comparison matrix” for each

metric. For example, if three spacecraft are detected in

sequential images, the comparison matrix will be three-

by-three, comparing each possible pair of one current pre-

diction with one previous prediction. Since the SAM

computes loss and distance values, lower values indicate

matches. Ideally, these should occur along the diagonal of

the comparison matrices, indicating predictions are con-

sistent between images.

Tables 5 and 6 show the averaged comparison matri-

ces for the spatial- and appearance-based metrics, respec-

tively, over the entire Cygnus and Tango RPO trajec-

tory. Since there are only two spacecraft in this exam-

ple, the matrices are two-by-two. Recognizing that Tango

occasionally produces FPs, the corresponding values are

nulled and ignored when averaging. As desired, the low-

est values (highlighted in burnt orange) fall on the diag-

onals, indicating both metrics reliably match each space-

craft throughout the trajectory.

Table 5. Average of spatial-based comparison ma-

trices over RPO trajectory.

Previous

Cygnus Tango

Current
Cygnus 0.571 14.330

Tango 14.332 2.391

Table 6. Average of appearance-based comparison

matrices over RPO trajectory.

Previous

Cygnus Tango

Current
Cygnus 0.040 1.519

Tango 1.520 0.417

Fig. 16 displays histograms for the values of each com-

parison matrix. Without exception, both metrics produce

lower values for true matches compared to false matches

(i.e., swapping Cygnus and Tango). Despite compara-

tively large variance for the Tango vs. Tango compar-

isons, the association metrics prove consistently reliable

indicators of spacecraft association.

Conclusion. Spacecraft proximity operations con-

tinue gaining prevalence, resulting in an urgent call for

robust relative navigation packages. This work proposes

the Spacecraft Localization Pipeline for detecting and

classifying known and unknown spacecraft classes during

close-proximity navigation using only a monocular cam-

era. The bulk of this work is the design of the Space-

craft Localization Network, which uses several novel loss

terms to convert an RPN-based object detection network

into an unknown-aware detector. Two novel metrics are
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(a) Spatial-based metric

(b) Appearance-based metric

Figure 16. Histograms of association metrics dur-

ing the RPO trajectory.

proposed, collectively referred to as the Spacecraft Asso-

ciation Module, to correlate spacecraft instances between

frames, creating the full SLP.

Results validate the loss terms in accomplishing their

desired training objectives and demonstrate promising

results in detecting and classifying unknown spacecraft.

Despite these encouraging results, several fail cases are

prominent, often resulting from background artifacts. Re-

sults also indicate that both SAM metrics are particularly

effective at associating spacecraft instances in a time-

series.

Future work to address the SLN limitations may in-

clude incorporating the troubling background artifacts

and more diverse spacecraft sizes during training. A re-

finement process, perhaps using traditional image pro-

cessing techniques on an area of interest, may enable

tighter bounding boxes on unknown proposals. Addition-

ally, an incremental learning scheme may allow the SLN

to gradually learn the unknown spacecraft classes. Be-

yond this work, implementing the SLP alongside higher

level tasks–such as pose estimation or tracking–may test

the efficacy of the SLP as a pre-processing pipeline. De-

ploying the SLP on lightweight, flight-grade hardware is

another natural next step to verify readiness for opera-

tions.

Disclaimer. The views expressed in this paper are

those of the authors and do not reflect the official policy

or position of the United States Space Force, Department

of Defense, or the U.S. Government.
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