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Abstract. The photogrammetric reconstruction of

planetary terrain from images is an essential task for

many planetary science missions. This task requires the

determination of the 3D location of a terrain point—

usually through triangulation and subsequent bundle ad-

justment. When the images are captured by conventional

framing cameras, there are well-known and widely-used,

statistically optimal solutions. Many digital terrain maps

(DTMs), however, are produced using pushbroom images

(and not framing camera images). The geometry of push-

broom image formation is fundamentally different, and

the familiar pinhole camera model is inapplicable. In this

work, we use the linear pushbroom camera model to de-

velop a statistically optimal solution to the triangulation

of a 3D point from two or more pushbroom images.

Introduction. Pushbroom cameras are common sci-

ence instruments in planetary imaging and exploration.

These cameras are scanning sensors that posses a linear

array of detectors which produce a one-dimensional image

at any instant in time. A 2D image is obtained by stack-

ing together sequential 1D images captured as the camera

flies over the terrain. Because of the continuous exposure

of their sensor array, pushbroom cameras provide more

radiometrically accurate images when compared with con-

ventional framing cameras, which is particularly useful in

poor or variable illumination conditions.1

A common application of pushbroom images is in the

construction of digital terrain maps (DTMs). Examples

of pushbroom cameras used to take pictures of planetary

surfaces are the Narrow Angle Camera (NAC) onboard

the Lunar Reconnaissance Orbiter (LRO),2 the Mars Ex-

press High Resolution Stereo Camera (HRSC),3 and the

High Resolution Imaging Science Experiment (HiRISE)

onboard the Mars Reconnaissance Orbiter (MRO).4

Pushbroom cameras differ from common framing cam-

era in that the formation of a pushbroom image is depen-

dent upon the dynamics of the spacecraft during image

capture. An accurate model of the pushbroom projection

must take this into account. The motion of the cam-

era is responsible for the high aspect ratio of pushbroom

images of planetary terrains. Due to the short time win-

dow over which typical pushbroom images are captured,

it is reasonable to assume that the camera has a constant

speed and constant attitude. For this reason, we decided

to work with the linear pushbroom camera model devel-

oped in Ref. [5]. The corresponding projection matrix

can be easily derived from the camera parameters and

the spacecraft state. The linear pushbroom model also

has applications in aerial imagery.6

Since pushbroom cameras are often used in terrain re-

construction, particular attention has been given to tri-

angulation in the literature. Reference [7] develops a

method for 3D reconstruction from pushbroom images

and demonstrates it on SPOT images,8 a model which

was then refined by Ref. [9]. A full terrain reconstruc-

tion pipeline from pushbroom images is proposed in Ref.

[10]. These works inherently require bundle adjustment

to determine the optimal solution. A more recent but still

iterative approach is provided in Ref. 11, where the au-

thors propose a linear pushbroom triangulation solution

which uses Rational Function Model (RFM) to charac-

terize the projection. This model is purely mathematical

(i.e., not directly related to the geometry of observation)

and its coefficients are not always available in satellite

image metadata.10

Despite the ubiquity of pushbroom cameras in space

applications, the authors are unaware of a non-iterative

and statistically optimal solution for triangulating a point

using pushbroom images. In this work, we will use the

optimal framework described in Ref. [12] to develop such

an optimal solution under the linear pushbroom camera

model.

The linear pushbroom camera model. Begin by

defining the camera frame with the z-axis along the bore-

sight, y-axis along the 1D sensor array, and the x-axis

completing the right-handed triad (positive in the direc-

tion of the camera velocity). At each instant in time, the

camera position and the y-axis define the so-called view

plane, where the one-dimensional instantaneous field of

view lies. Any point in the field of view will project along

the y-direction following perspective projection.5,13 If

we let ℓ be the position vector of the point relative to the

camera, expressed in the instantaneous camera frame, and

dy, vp be the usual camera calibration parameters,14 we

may express the v-pixel coordinate of the point along the

y-axis using [
vw

w

]
=

[
0 dy vp
0 0 1

]
ℓ (1)

where the parameter w was introduced to explicitly ac-

count for the scaling.

As the camera moves, the view plane sweeps out a

region of space, resulting in an orthographic projection

along the x-axis. A point that does not lie in the view

plane at some time t0, but is visible in the final 2D image,

necessarily lies in the view plane of the camera at some

other time t. Letting ℓ0 be the position vector of that

point relative to the camera at t0, and ℓ be the position

vector of the same point relative to the camera at t, we

can find the u-pixel coordinates by determining the time
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at which ℓx = 0. Since the motion of the camera is linear,

with constant velocity v = [Vx Vy Vz ]
T , we have

ℓ0 = ℓ+ v(t− t0) (2)

which yields, setting ℓx = 0

∆t = t− t0 =
ℓ0x
Vx

(3)

The u-pixel coordinates may now be determined intro-

ducing the exposure time τ5,13

u = ∆t/τ (4)

The combination of Eq. (4) and Eq. (1), together with

the relation in Eq. (2), provides the linear pushbroom

projection projection model u

vw

w

 =

1/τ 0 0

0 dy vp
0 0 1

 1/Vx 0 0

−Vy/Vx 1 0

−Vz/Vx 0 1

 ℓ0 (5)

recalling that ℓ0 is the position vector of any point in the

world relative to the camera location at time t0.

The projection model may be easily modified to express

world points in any other chosen world frame. Let r0 be

the position of the camera at time t0, expressed in the

new world frame, and let TW
C be the attitude rotation

matrix from the world frame to the camera frame. Given

a point pW ∈ R3, we may obtain ℓ0 as

ℓ0 =
[
TW

C −TW
C r0

] [pW

1

]
= ΠW

C

[
pW

1

]
(6)

and combine it with Eq. (5) to obtain the final projection

model  u

vw

w

 = KBΠW
C

[
pW

1

]
(7)

where we used

K =

1/τ 0 0

0 dy vp
0 0 1

 (8)

B =

 1/Vx 0 0

−Vy/Vx 1 0

−Vz/Vx 0 1

 (9)

A multi-view linear solution. Assume we have

N ≥ 2 cameras that observe the same point pW in their

respective pushbroom images. A simple manipulation of

the linear pushbroom model of Eq. (7) already allows us

to triangulate the 3D position of that point.

Assume that the pushbroom camera i takes the picture

of the point pW , and let K i, B i, Π
W
Ci be the matrices

defining the corresponding projection model. The first

step requires that we find an explicit expression for the

scale factor wi. This quantity is nothing more than the

Figure 1. Relationship between the camera initial

position r0i, the camera position ri at the time of

the projection of the point pW and the line of sight

ℓi

z-component of the vector joining the point on the ter-

rain and the camera at the time of the point projection,

expressed in the camera frame. Recalling that this vector

is ℓi, we may write (see Fig. 1)

wi = ẑT
i ℓWi = ẑT

i (pW − r i) (10)

where ẑ i is the direction of the z-axis of the camera frame

expressed in the world frame (i.e. the third row of the

matrix TW
Ci). Since the camera has constant velocity, we

may also write

wi = ẑ i
T (pWi − r0i −∆tivWi) (11)

where vWi = TC
Wiv and ∆ti comes from Eq. (4).

Substituting this result into the left-hand side of Eq.

(7) and manipulating, we obtain ui
viwi

wi

 =

ui0
0

+
 0

(pWi − r0i − vWiuiτi)
T ẑ ivi

(pWi − r0i − vWiuiτi)
T ẑ i

 (12)

that is ui
viwi

wi

 =

 ui
−viuiτiv

T
Wiẑ i

−uiτiv
T
Wiẑ i

+

 0

ẑT
i vi
ẑT
i

pWi −

 0

ẑ ivi
ẑ i

 r0i

(13)

The right-hand side of Eq. (7) is

K iB iΠ
W
Ci

[
pw

1

]
= K iB iT

W
CipW −K iB iT

W
Cir0i (14)

Combining these two equationsK iB iT
W
Ci −

 0

viẑ
T
i

ẑT
i

pW =

 ui
−viuiτiv

T
Wiẑ i

−uiτiv
T
Wiẑ i

−

 0

viẑ
T
i

ẑT
i

−K iB iT
W
Ci

 r0

(15)

which is a linear system of the form

AipW = bi (16)
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Because of scale ambiguity, the matrix Ai is not full rank

and at least two pushbroom images are necessary to suffi-

ciently determine the system. We can formulate the sys-

tem to solve as

ApW = b, (17)

where A and b are defined as

AT =
[
AT

1 . . . AT
N

]
, bT =

[
bT1 . . . bTN

]
, N ≥ 2

(18)

The solution of this least-square problem may be found

with classical approaches.

Optimal triangulation. The least-squares solution

obtained solving the system of equations of Eq. (17) is

not optimal in a statistical sense. This section highlights

a way to obtain the maximum likelihood estimate (MLE)

from the previously obtained equations. The derivation

follows a similar approach to regular the multi-view opti-

mal triangulation in Ref.[ 12].

First, note that Eq.16 only holds in the case where the

measurements constituting the system are perfect. How-

ever, the measurements come from noisy sources in real

applications. There is thus a residual term which can be

written as

ϵi = AipW − bi. (19)

The residual ϵi ̸= 0 in real applications due to error

sources such as landmark localization errors. Let us then

assume that the measured landmark pixel locations devi-

ate from their true locations with a Normal distribution,

ũ = u+N (0, σu) and ṽ = v +N (0, σv). Assuming these

errors to be uncorrelated, we can propagate this uncer-

tainty to compute the covariance of ϵi as

Rϵi = σ2
uJuiJ

T
ui

+ σ2
vJ viJ

T
vi (20)

where the partials are

Jui =
∂ϵi
∂ui

=

 −1

viτiv
T
Wiz i

τiv
T
Wiz i

 (21)

J vi =
∂ϵi
∂vi

=

 0

(pW − r0 +∆tivWi)
T z i

0

 (22)

The reader will note that the covariance Rϵi cannot be

full rank due to the fact that ϵi is the residual of an un-

derconstrained equation. However, the eigenvector of Rϵi

corresponding to the 0 eigenvalue is naturally orthogonal

to the residual vector ϵi. It then is possible to use the

pseudo-inverse to formulate the MLE cost-function

J(pW ) =
∑
i

ϵTi R
†
ϵiϵi. (23)

To minimize the cost function in Eq. 24, take its derivative

with respect to pW and set it to zero, so

J(pW ) =
∑
i

(AipW − bi)
TR†

ϵi(AipW − bi), (24)

(∑
i

AT
i R

†
ϵiAi

)
pW =

(∑
i

AT
i R

†
ϵibi

)
. (25)

It is apparent that prior knowledge of pW is necessary

to obtain Rϵi . However, pW is unknown and is precisely

the variable we seek to estimate. To remedy this, we can

create a coarse initial estimate of pW , which will be the

topic of the next section.

Providing an initial guess. The optimal triangulation

approach presented in this section requires an initial guess

of the the position vector pW , which may be obtained in

at least two ways.

Both approaches require the determination of the range

λ between a camera and the observed point. Given the

position of the camera i at the initial time t0i, we can de-

termine its position at the time ti of the point projection

by combining Eq. (2) and Eq. (4)

r i = r0i + vWiuiτi (26)

Since the line of sight from the camera to the point

must belong to the instantaneous view plane (where the

field of view lies), the position vector of the point on the

terrain may be obtained as

pW = r i + λiyiŷ i + λiẑ i (27)

where ŷ i is the direction of the y-axis of the camera frame

expressed in the world frame, λi is the unknown scaling

factor and yi is the image plane coordinate associated

with vi
yi = (vi − vPi)/dyi (28)

If the mean radius of the orbited planet is available, then

a single camera may be used, and a coarse estimate of

the point pW may be obtained by selecting the smallest

λi such that ∥pWi∥ = Rplanet, as shown in Fig.2. This

requires the solution of a simple quadratic system. If we

let

a = 1 + y2i (29a)

b = yir
T
i ŷ i + rT

i ẑ i (29b)

c = rT
i r i −R2

planet (29c)

then λi will be the smallest among

λi1,i2 =
−b±

√
b2 − ac

a
(30)

Alternatively, if the orbited planet is unknown, the

ranges λi and λj corresponding to two cameras i and j

may be found by imposing that the right-hand side of Eq.

(27) is the same for the cameras i and j. Any two equa-

tions of this system can be used to solve for the unknown

ranges. For example, setting[
pi1
pi2

]
=

[
yiŷi,1 + ẑi,1
yiŷi,2 + ẑi,2

]
(31)

and defining pj1, pj2 similarly, we may determine the un-

known ranges as

λj =
pi,1(riy − rjy) + pi,2(rjx − rix)

pi,1pj,2 − pi,2pj,1
(32a)

λi = 1/pi,1
(
rjx − rix + λjpj,1

)
(32b)
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Table 1. Results of a Monte Carlo simulation with 100, 000 runs and 1 pixel of noise in both directions

on a simulated LLO case.

∆pWx [km] ∆pWy [km] ∆pWz [km]

bias std. dev bias std. dev bias std. dev

linear 3.4639× 10−5 1.8257× 10−2 −3.50726× 10−5 1.6111× 10−2 −2.2034× 10−5 1.0015× 10−2

optimal −5.5651× 10−7 3.0002× 10−3 −3.3691× 10−6 2.0810× 10−3 −2.7777× 10−6 2.1487× 10−3

Figure 2. The line of sight from the camera inter-

sects a spherical planet at two points, but only the

point with smaller range λ1 is actually visible.

Experimental results. Consider two pushbroom

cameras with the following parameters:

r01 =

−1252.8

1037.7

−923.91

 km, v01 =

−1.0937

−1.1965

0.1233

 km/s (33)

r02 =

−1256.5

1033.8

−887.67

 km, v02 =

−0.9237

−1.3269

−0.2397

 km/s (34)

(35)

These two cameras take pictures of the same point in

space. For a perfectly spherical Moon, this point lies at

pW =

−1129.9

867.2

−995.9

 km (36)

In our experiments, we assumed fluctuations in the point’s

elevation using 3 km of standard deviation. Applying

noise to the ideal pixel coordinates of the point in the

two images, we can perform a Monte Carlo simulation

and compare the performance of the solution provided by

the linear system with the performance of the optimal

solution.

In this simulation, we used the initial guess provided

by Eq. (30), which requires the knowledge of the Moon’s

radius. Since, in reality, the Moon is not a perfect sphere,

we modeled fluctuations in the lunar radius by sampling a

normal distribution with zero mean and five kilometers of

standard deviation. We also applied an error with zero-

mean and 1 pixel of standard deviation to both the u and

v pixel coordinates of the point’s projection in the two

pushbroom images.

Both methods are able to provide the correct solution,

with the statistically optimal approach being more accu-

rate in 91% of the cases. More details on the statistics of

the simulation may be found in Table 1.

Conclusions. In this work, we presented a solution

to the triangulation of a point from two or more pushb-

room images which leverages the pushbroom linear pro-

jection model. The first approach proposed, while simply

requiring a solution of a linear system, does not guaran-

tee statistical optimality. The second solution presented,

instead, is statistically optimal in the sense that it mini-

mizes the reprojection error of the point in the pushbroom

images. Both the solutions are non-iterative, and their

performance is analyzed with a Monte Carlo simulation.
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