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Abstract. Missions to small bodies rely heavily on

optical feature tracking for characterization and relative

navigation of the target body. While deep learning has led

to great advancements in computer vision, feature extrac-

tion and matching in imagery of small bodies is still chal-

lenging in scenarios involving high illumination angles

and shadows. This paper investigates the use of recently

proposed “detector-free” matching methods for imaging

matching in low-light and completely shadowed regions.

The approach is validated on real imagery from the As-

troVision dataset, demonstrating the ability of these ap-

proaches to precisely match keypoints in shadowed regions.

Introduction. There has been an increasing interest

in missions to small bodies (e.g., asteroids, comets) due

to their great scientific value.1 Image feature tracking

is an integral component of small body science missions,

serving as the foundation for shape reconstruction and

relative navigation methodologies. Challenging illumi-

nation conditions are an innate characteristic of small

body imagery. Indeed, due to the absence of an atmo-

sphere of most small bodies to diffuse incoming light,

images commonly feature rapidly changing lighting and

dynamic hard shadowing, especially at high illumination

angles.2 Moreover, mapping perpetually shadowed re-

gions, such as those found at the Lunar South Pole,3,4

presents additional challenges for optical sensors. State-

of-the-practice approaches to small body surface recon-

struction, i.e., Stereophotoclinometry (SPC),5 are sensi-

tive to lighting conditions and cannot operate on perpet-

ually shadowed regions.6 Despite the success of keypoint

detection and feature description methods based on deep

learning, these approaches still struggle in scenarios in-

volving significant shadowing.7

Approaches to mapping in low-light and perpetually

shadowed regions typically rely on range measurements

acquired by active sensors such as flash LiDARs. How-

ever, methods based on active sensors are constrained

by the relatively small effective operating range and the

increased size, weight, and power (SWaP) requirements

relative to passive sensors such as monocular cameras.

For example, the OSIRIS-REx Guidance, Navigation, and

Control (GNC) flash LiDAR had a maximum operational

range of approximately 1 km.8,9 Conversely, the OSIRIS-

REx Camera Suite (OCAMS)10 was able to acquire 5 cm

GSD images at almost 4 km, providing higher-resolution

measurements earlier in the mission than the active sen-

sors onboard and allowing for detailed surface character-

ization during the early phases of the mission.11

In this paper, we investigate the use of recently pro-

posed “detector-free” matching methods, i.e., DKM,12 for

mapping of shadowed regions on the surface of small bod-

ies. We find that training these detector-free methods on

imagery of small bodies from the AstroVision dataset,7

along with the increased receptive field afforded by these

methods, enables the detection and matching of keypoints

in completely shadowed regions. We believe this could en-

able image-based surface reconstruction in areas featuring

perpetually high illumination angles and shadowing.

Detector-Free Feature Matching. Traditional fea-

ture matching (e.g., SIFT13) follows the detect-then-

describe paradigm which comprises sparse keypoint de-

tection, feature description, and then matching. This

approach degrades in low-texture regions where localiza-

tion of keypoints is challenging. To that end, we use

DKM,12 a deep-learning model that follows the detector-

free paradigm. Instead of focusing on matching sparse

keypoints, DKM provides a dense warp between views by

matching all pixels. DKM leverages a novel global match-

ing scheme using a Gaussian Process regression to achieve

a large receptive field. Thus, DKM is able to aggregate

information from other regions in the image and provide

matches in featureless areas (e.g., low-light regions) where

traditional methods would fail to detect keypoints.

Implementation Details. We use a batch size of 1

with a learning rate of 4×10−4 for the decoder and refin-

ers, and 2×10−5 for the backbone. We use the AdamW14

optimizer with a weight-decay factor of 1 × 10−2. Using

the pre-trained weights, we fine-tune for 75,000 steps on

17,504 images of Asteroid 4 Vesta from the Dawn mis-

sion. Training takes approximately 24 hours on an Nvidia

GeForce RTX 2080 Ti GPU.

We evaluate the matching performance of the pre-

trained and finetuned DKM model based on precision,

i.e., the ratio of correct to total matches. Matches are

verified by projecting keypoints from the first image to

the second and from the second image to the first using

ground truth poses and depth maps and enforcing that

the projected image coordinates are within some distance

to the matching keypoint, where we report the precision

at distance thresholds of 1, 3, and 5 pixels. Moreover, we

report the area under the curve (AUC) of the normalized

cumulative pose error at thresholds of 5◦, 10◦, and 20◦,
where the pose error is the maximum of the angular errors

in rotation and translation.

Results & Discussion. We compare the performance

of the pretrained DKMmodel against the model finetuned

on AstroVision7 data in Table 1, and a qualitative com-

parison is shown in Figure 1 with image pairs with perpet-

ually shadowed regions. In Figure 1, we filter out matches

with a certainty of less than 0.005, since it was empirically
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Table 1. AstroVision benchmark results on the 4

Vesta dataset. Best results are bolded.

Precision [%] AUC [%]

Method @1 px @3 px @5 px @5◦ @10◦ @20◦

Pretrained 19.80 58.30 88.21 18.10 24.30 30.00

Finetuned 19.90 69.10 88.91 22.30 35.90 48.60

found to work well, and we randomly sample 300 matches

from shadowed regions and 100 from other areas for each

pair to plot. The finetuned model outperforms the pre-

trained model on all metrics in Table 1. Additionally, as

shown in Figure 1, the model finetuned on Astrovision

data demonstrates precise matching in completely shad-

owed regions where the pretrained model fails to detect

any matches in the shadowed regions. We believe that

our models could enable image-based reconstruction of

perpetually shadowed regions, which is not possible with

SPC.
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Figure 1. Qualitative comparison of matching performance between the pretrained DKM model (left) and

the model finetuned on AstroVision data (right). Correct matches are drawn in green and the keypoints

of incorrect matches are drawn in red.
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