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Motors in G(3,0,1)



Action of a Motor in G(3,0,1)

(Image Credit: Eric Lengyel)

The motor Q rotates the object x about the (unitized) line L by the angle 2ϕ

and translates it along the line by the distance 2d.
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Kinematics of a Motor in G(3,0,1)

Exponential representation:

Q = e(d+ϕ1)/L
/

Differentiating and letting Ω denote the twist bivector, the kinematic
equation for a motor becomes

Q̇ = −1
2
Ω /Q

If L is constant (over some time interval), then the twist bivector is

Ω = −2(ḋ + ϕ̇1) /L

= −2(Lϕ̇ −L☆ḋ)

where the superscript ☆ indicates the weight dual.
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Tensor Representation



Tensor Representation (Perwass)

• G(3,0,1) objects cast into order-1 tensors by stacking basis coefficients
into n × 1 column matrix

• G(3,0,1) operations occur via multiplication with higher-order tensors
• Example: geometric anti-product (order-3)

C =A /B ≡ ck = 
kijaibj

• Contract on either i or j: Two ways to express above as a product of an
order-2 and an order-1 tensor (i.e. a matrix-vector product):

c = Ψ/(a)b = Ξ/(b)a

• Similar relations hold for the wedge and and anti-wedge operations.
• Example: anti-reverse (order-2)

B =A
̃
≡ bj = R

̃
jiai ≡ b = R

̃
a

• Example: Sandwich – does not reduce to a matrix-vector product

B =Q /A /Q
̃
≡ bℓ = 
kij
lkmR

̃
mnajqiqn

=Miℓnqiqn

Use or disclosure of data contained on this page is subject to any restriction(s) on the title page of this document. 5



Summary of Tensor Representations of G(3,0,1) Operations

Operation Encoding Tensor Matrix Representation
Geometric Product �kij Ψ.(a) = �kijai

Ξ.(b) = �kijbj

Geometric Anti-Product 
kij Ψ/(a) = 
kijai

Ξ/(b) = 
kijbj

Wedge Product ⋀kij Ψ∧(a) = ⋀kijai

Ξ∧(b) = ⋀kijbj

Anti-Wedge Product ⋁kij Ψ∨(a) = ⋁kijai

Ξ∨(b) = ⋁kijbj

Reverse R̃ji R̃

Anti-Reverse R
̃

ji R
̃
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“Point Solution” a.k.a. Solving the
Generalized Wahba Problem



Generalized Wahba Problem

Given a set of multivector objectsM i andN j , corresponding to points,
lines, planes, and/or motors, whereM i are members of a known model
object set, andN j are members of an observed object set, with known
correspondences betweenM i andN j , find the unique motor Q that
represents the screw transformation of all theM i into all theN i.

N i =Q /M i /Q
̃
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Point Solution (Perwass) i

Starting from
N i =Q /M i /Q

̃

Multiply on the right by Q and subtract

N i /Q −Q /M i = 0

Cast this into linear algebra:

Ψ/(ni)q −Ξ/(mi)q = 0

Clear that q must be a null vector of Ψ/(ni) −Ξ/(mi), which obviously
holds for a sum over i.

Recognizing that q has only 8 non-zero values, let q̂ =HTq select the
non-zero elements.
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Point Solution (Perwass) ii

The matrix
∑
i

(Ψ/(ni) −Ξ/(mi))H

must have rank 7 for there to be a unique direction in the null space, but the
length of this vector is not constrained.

For a proper motor, the constraint ∥q○∥ = 1 scales the entire null vector.

Let q̂● =HT
● q● select the four non-zero elements of q● and let q̂○ =HT

○ q○

select the four non-zero elements of q○.

The constraint that q̂T○H○HT
● q̂● = 0 ensures that q● has the proper length.
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Overdetermined Case

In either the overdetermined case, or the case of noisy observations, q will
not be an exact null vector.

More general approach: seek the q that minimizes

J =∑
i

βi∥(Ψ/(ni) −Ξ/(mi))Hq∥2

subject to the constraints ∥q○∥ = 1 and q̂T○H○H
T
● q̂● = 0.

Perwass shows that the maximum singular value of

∑
i

(Ψ/(ni) −Ξ/(mi))T (Ψ/(ni) −Ξ/(mi))H

provides the minimizing solution for q.
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Multiplicative Extended Kalman Filter



Small Perturbations

In terms of trig functions:

Q = L sinϕ + 1 cosϕ −L☆d cosϕ − d sinϕ

Clear that for a motor δQ associated with a small rotation δϕ,

δQ ≈ 1 +Lδϕ −L☆d − dδϕ

≈ 1 + δΘ

where δΘ = Lδϕ −L☆d − dδϕ.

If d is also small, then dδϕ may be neglected as well.

Degrees of Freedom: L has only four degrees of freedom (two from its
direction, one from the length of its moment, and one from the constraint
that its moment and direction must be orthogonal), so δΘ has only the
additional two degrees of freedom from d and ϕ, for a total of six degrees of
freedom.
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Global and Local Estimates

Suppose there is an estimate of the motor, Q̂. True motor can be expressed
as

Q = δQ / Q̂

= (1 + δΘ) / Q̂

Take Q as the “global” pose representation, and δΘ as the “local”
representation of the pose errors (with translational error δd small enough
to neglect δdδϕ).

The G(3,0,1) pose MEKF estimates δΘ, proceeding by the same three-step
iteration as the original, attitude-only MEKF:

1. Measurement update of the local error, δΘ;
2. Reset that moves the updated information from the local error to the
global pose estimate, Q̂; and

3. Time propagation step that moves the global pose estimate to the time
of the next measurement(s).
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Measurement Update i

Expressed in linear algebra, the measurement will in general be some
nonlinear function of the true motor, corrupted by a measurement error, v:

y = h(q) + v

The measurement partials matrix is

H = ∂h

∂q

∂q

∂δϑ

= ∂h

∂q

∂

∂δϑ

⎛
⎜⎜⎜⎜
⎝

Ψ/(

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

05×1

δϑ

04×1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

)q̂

⎞
⎟⎟⎟⎟
⎠

= ∂h

∂q

∂

∂δϑ

⎛
⎜⎜⎜⎜
⎝

Ξ/(q̂)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

05×1

δϑ

04×1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟
⎠

= ∂h

∂q
Ξ/(q̂)

⎡⎢⎢⎢⎢⎢⎢⎣

05×6

I6×6

05×6

⎤⎥⎥⎥⎥⎥⎥⎦

= ∂h

∂q
Ξ̃/(q̂)
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Measurement Update ii

The measurement update for the error state is

δϑ+ = (I −KH)δϑ− +K[y − h(q̂−)]

where the gain K is the usual Kalman filter gain.

Covariance:

• Perwass develops a concept of a random multivector in terms of a
linear algebra representation that is entirely consistent with the manner
in which the traditional MEKF treats random quaternions.

• Covariance for the pose MEKF is therefore the 6 × 6 covariance of the
error in δϑ.

• The usual Kalman filter relations for the covariance updates apply.
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Measurement Partials for Direct Measurements

Suppose Y is a direct observation of a point, line or plane, and X is the
representation of that same object in a model or reference system. Then the
model object relates to the observed object according to

Y =Q /X /Q
̃
+V ≡ yℓ =Miℓnqiqn + vℓ

y = h(q) + v

where V ≡ v is the observation error. The measurement partials matrix is

∂hℓ

∂qp
= qi(Milp +Mpli)

= Llp +Npl

so that the complete partial derivative with respect to the filter state is

H = (Llp +Npl) Ξ̃
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Measurement Partials for Indirect Measurements i

Y

(Y^A)
⌄

F

A

F

(Y^A)

An example of an indirect measurement is the observation of a point, line,
or plane from an ideal pinhole camera. Let A denote the aperture point and
F the virtual (front) image plane. The join of the observed object Y with the
aperture point Y ∧A, defines an object containing both objects. The
intersection of this object with the virtual image plane is the observation:

Z = (Y ∧A) ∨F

= [(Q /X /Q
̃
) ∧A] ∨F +V
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Measurement Partials for Indirect Measurements ii

This is equivalent to

zp = qiqjMikj⋀mkℓ⋁pmnaℓfn + vp
= qiqjJijp + vp
= hp(q) + vp

where ⋀mkℓ and ⋁pmn encode the wedge and anti-wedge products, in a
manner analagous to Γkij . Note that this relation does not enforce
unitization on Z ≡ z. The measurement partials matrix is

∂hp

∂qr
= qi(Jirp + Jrip)

= Srp + Trp

Let UZ ≡ uz denote the unitized Z ≡ z:

UZ = Z/
√
Z ○Z ≡ uz = z/

√
z′Gz

= z/∥z∥○
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Measurement Partials for Indirect Measurements iii

The partial derivative of uz with respect to z is

∂uz

∂z
= 1

∥z∥○
(I − zz′G

∥z∥2○
)

so that the complete partial derivative of uz with respect to the filter state is

H = 1

∥z∥○
(I − zz′G

∥z∥2○
)(Srp + Trp) Ξ̃
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State Reset

The reset moves the update of δΘ from the measurement to the global
motor, according to

Q̂+ = (1 + δΘ) / Q̂−

The motor (1 + δΘ) must be unitized to ensure that Q̂ remains unitized
across the reset. The usual MEKF practice is not to change the covariance
when a reset occurs.
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Time Update

Differentiate Q = δQ / Q̂:

Q̇ = ˙δQ / Q̂ + δQ / ˙̂
Q

Rearrange:

˙δQ = −1
2
(Ω / δQ − δQ / Ω̂)

Approximate the true twist as Ω ≈ Ω̂ + δΩ, where δΩ has zero expectation;
reduces to

˙δΘ = 1

2
[δΘ / Ω̂ − Ω̂ / δΘ] − 1

2
δΩ1

where the first term on the right-hand side is one of four possible
commutators in G(3,0,1); these are sort of generalizations of the
cross-product.

Finally, if δΘ is zero at the beginning of a time update, as the reset imposes,
it will remain zero, since δΩ has zero expectation.
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Pose MEKF Summary

1. Measurement update of the local error, δΘ:
• Only need the 6 bivector components, x̂ = ϑ
• Usual Kalman Update cycles through any measurements available,
beginning with x̂− = 0 due to reset:

Kk = P−k Hk(HkP
−
k Hk + Vk)−1

x̂+k = x̂
−
k +Kk(yk − h(q̂−k))

P+k = (I −KkHk)P−k (I −KkHk)T +KkVkK
T
k

2. Reset:

Q̂+ = (1 + δΘ) / Q̂−

then set x̂ = ϑ = 0
3. Time propagation:

• Advance global pose using Q̇ = − 1
2
Ω /Q

• Advance filter covariance: Ṗ = FP + PFT +Q, where F is the bivector
submatrix of 1

2
[Ξ/(Ω̂) −Ψ/(Ω̂)]

Use or disclosure of data contained on this page is subject to any restriction(s) on the title page of this document. 21



Additional Details (Backups)



Detailed Example: Matrix Representation of Geometric Anti-Product – 1 of 4

For the multi-vector A,

A = se0 + pxe1 + pye2 + pze3 + pwe4
+mxe23 +mye31 +mze12 + vze43 + vye42 + vxe41
+ fwe321 + fze412 + fye431 + fxe423 + σe1234

express as order-1 tensor with the following coefficient ordering:

a = [s, px, py, pz, pw,mx,my,mz, vz, vy, vx, fw, fz, fy, fx, σ]T

= [s,pT
xyz, pw,m

T
xyz,v

T
zyx, fw,f

T
zyx, σ]T

= [s,pT
xyzw,m

T
xyz,v

T
zyx,f

T
wzyx, σ]T
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Detailed Example: Matrix Representation of Geometric Anti-Product – 2 of 4

Ψ/(a) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

σ −fx −fy −fz −fw −vx −vy −vz −mz −my −mx pw pz py px s

−fx σ −vz vy mx −pw fz −fy py −pz fw vx my −mz s px

−fy vz σ −vx my −fz −pw fx −px fw pz vy −mx s mz py

−fz −vy vx σ mz fy −fx −pw fw px −py vz s mx −my pz

0 0 0 0 σ 0 0 0 −fz −fy −fx 0 −vz −vy −vx pw

vx pw −fz fy −px σ −vz vy my −mz s fx −py pz −fw mx

vy fz pw −fx −py vz σ −vx −mx s mz fy px −fw −pz my

vz −fy fx pw −pz −vy vx σ s mx −my fz −fw −px py mz

0 0 0 0 −fz 0 0 0 σ vx −vy 0 −pw −fx fy vz

0 0 0 0 −fy 0 0 0 −vx σ vz 0 fx −pw −fz vy

0 0 0 0 −fx 0 0 0 vy −vz σ 0 −fy fz −pw vx

−pw −vx −vy −vz s fx fy fz −pz −py −px σ −mz −my −mx fw

0 0 0 0 vz 0 0 0 pw fx −fy 0 σ vx −vy fz

0 0 0 0 vy 0 0 0 −fx pw fz 0 −vx σ vz fy

0 0 0 0 vx 0 0 0 fy −fz pw 0 vy −vz σ fx

0 0 0 0 −pw 0 0 0 −vz −vy −vx 0 fz fy fx σ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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Detailed Example: Matrix Representation of Geometric Anti-Product – 3 of 4

Ξ/(a) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

σ fx fy fz fw −vx −vy −vz −mz −my −mx −pw −pz −py −px s

fx σ vz −vy −mx pw fz −fy −py pz fw vx my −mz −s px

fy −vz σ vx −my −fz pw fx px fw −pz vy −mx −s mz py

fz vy −vx σ −mz fy −fx pw fw −px py vz −s mx −my pz

0 0 0 0 σ 0 0 0 −fz −fy −fx 0 −vz −vy −vx pw

vx −pw −fz fy px σ vz −vy −my mz s −fx −py pz fw mx

vy fz −pw −fx py −vz σ vx mx s −mz −fy px fw −pz my

vz −fy fx −pw pz vy −vx σ s −mx my −fz fw −px py mz

0 0 0 0 −fz 0 0 0 σ −vx vy 0 −pw fx −fy vz

0 0 0 0 −fy 0 0 0 vx σ −vz 0 −fx −pw fz vy

0 0 0 0 −fx 0 0 0 −vy vz σ 0 fy −fz −pw vx

pw −vx −vy −vz −s −fx −fy −fz −pz −py −px σ mz my mx fw

0 0 0 0 vz 0 0 0 pw −fx fy 0 σ −vx vy fz

0 0 0 0 vy 0 0 0 fx pw −fz 0 vx σ −vz fy

0 0 0 0 vx 0 0 0 −fy fz pw 0 −vy vz σ fx

0 0 0 0 −pw 0 0 0 −vz −vy −vx 0 fz fy fx σ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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Detailed Example: Matrix Representation of Geometric Anti-Product – 4 of 4

By denoting the usual skew-symmetric cross-product matrix as K(x), and
introducing the convention that reflecting the symbol for a matrix
left-to-right indicates a similar reflection of its columns, Ψ/(a) and Ξ/(a)
become

Ψ/(a) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

σ −fT
xyz −fw −vT

xyz −mT
zyx pw pT

zyx s

−fxyz σI +K(vxyz) mxyz −pwI −K(fxyz) fw I+ K(pxyz) vxyz s I+ K(mxyz) pxyz

0 O1×3 σ O1×3 −fT
zyx 0 −vT

zyx pw

vxyz pwI +K(fxyz) −pxyz σI +K(vxyz) s I+ K(mxyz) fxyz −fw I− K(pxyz) mxyz

O3×1 O3×3 −fzyx O3×3 σI −K(vzyx) O3×1 −pwI +K(fzyx) vzyx

−pw −vT
xyz s fT

xyz −pT
zyx σ −mT

zyx fw

O3×1 O3×3 vzyx O3×3 pwI −K(fzyx) O3×1 σI −K(vzyx) fzyx

0 O1×3 −pw O1×3 −vT
zyx 0 fT

zyx σ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Ξ/(a) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

σ fT
xyz fw −vT

xyz −mT
zyx −pw −pT

zyx s

fxyz σI −K(vxyz) −mxyz pwI −K(fxyz) fw I− K(pxyz) vxyz −s I+ K(mxyz) pxyz

0 O1×3 σ O1×3 −fT
zyx 0 −vT

zyx pw

vxyz −pwI +K(fxyz) pxyz σI −K(vxyz) s I− K(mxyz) −fxyz fw I− K(pxyz) mxyz

O3×1 O3×3 −fzyx O3×3 σI +K(vzyx) O3×1 −pwI −K(fzyx) vzyx

pw −vT
xyz −s −fT

xyz −pT
zyx σ mT

zyx fw

O3×1 O3×3 vzyx O3×3 pwI +K(fzyx) O3×1 σI +K(vzyx) fzyx

0 O1×3 −pw O1×3 −vT
zyx 0 fT

zyx σ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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