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Abstract. Compact CPUs and GPUs enable new on-

satellite capabilities previously relegated to ground sta-

tions. One such application is optical navigation using

landmarks, such as features on the Moon’s surface. Ad-

vances in machine learning enable complex image process-

ing tasks, but deep neural networks require significant im-

agery for training. The goal of this extended abstract is to

demonstrate the viability of training a neural network on

synthetic imagery to detect landmarks in real Moon im-

ages. Experimentation shows that this is a viable approach

to solving the data problem for training neural networks

for Moon image processing.

Introduction. Identifying landmarks in lunar im-

agery is useful for optical navigation and registration of

captured images, but current methods perform poorly

when faced with off-nadir viewing angles or large search

areas.1 When trained properly, convolutional neural net-

works (CNNs) are robust to variations in image charac-

teristics such as lighting and view angle, and have been

used previously for landmark detection for satellite orbit

determination of an Earth-based satellite.2 The caveat

is that improving CNN robustness requires a large and

accurately labeled dataset containing many variations of

views, lighting conditions, and camera characteristics.

Using synthetic imagery would allow for all of these prob-

lems to be solved, but neural networks have previously

struggled to generalize from synthetic to real imagery.

The goal of this work is to demonstrate the viability

of using only synthetic imagery of the Moon made with

open source tools to train an object detection network to

detect landmarks in real Moon imagery.

Dataset Generation. This section describes the gen-

eration of the dataset used to train and evaluate the ob-

ject detection network. First, landmarks on the surface

of the Moon are selected using a similar process to VIN-

Sat.2 Next, synthetic images are generated from a 3D

model of the Moon and labeled using the pre-selected

landmark locations to create a novel dataset. Real Lu-

nar Reconnaissance Orbiter Camera (LROC) mosaics are

downloaded and labeled with the same landmark loca-

tion list. The training dataset contains 10,000 synthetic

images for training and 1000 LROC mosaic images for

evaluation.

Synthetic Moon Model. The 3D model of the Moon

is built in Blender, an open-source 3D rendering soft-

ware.3 The model is built from a sphere with a radius

of 1737.4 km with a digital elevation map (DEM) used

to offset the surface of the sphere.4 A color map of the

Moon built from Hapke parameter maps built from LROC

collections is overlaid on the model.5 The model addition-

ally contains a “Sun” lighting source and a camera. Due

to memory constraints, only the portions of the DEM in

view of the camera are dynamically loaded for each image

render.

Generating and Labeling Synthetic Images. The syn-

thetic dataset is built using an iterative process. First,

the predefined landmarks over a specific Moon region are

added to the scene as non-visible objects. Next, a ran-

dom camera position between 50 and 150 km altitude is

chosen over the current Moon region. The Sun is rotated

randomly between ±90◦ of the spacecrafts longitude and

between ±1.59◦ latitude. Next a random Sun intensity is

applied. The regions of the Moon’s surface in view of the

camera are determined and used to load the appropriate

missing DEM data. The landmarks in view of the camera

and their bounding boxes are calculated and saved to a

text label file. The image is then rendered and saved as a

PNG file. To mimic LROC Wide Angle Camera (WAC)

imagery as if captured by a typical staring array camera,

imagery is captured at a 704x704 resolution, matching

the height of the simulated image to the scan-width of

the WAC color imagery. The simulated camera has a

field of view of 60◦ to match WAC color imagery. This it-

erative process is outlined in Algorithm 1 and an example

synthetic image can be seen in Figure 1 on the left.

Algorithm 1 Generating and Labeling Synthetic Images

Require: num images ≥ 1

Set scene constraints

Load landmarks into scene

Initialize camera parameters

N ← num images

while N ≥ 1 do

1. Randomize camera placement

2. Randomize Sun orientation

3. Randomize Sun intensity

4. Load missing DEM data

5. Remove unneeded DEM data

6. Render image

7. Create label file

end while

Processing and Labeling Real Moon Image Data. The

real imagery dataset is created in a similar way to the syn-

thetic dataset, but with some key differences. A mosaic

of real Moon imagery is overlaid on the digital surface in

the Blender model. The camera is again randomly placed,

but the Sun orientation is placed directly overhead due

to the lunar imagery already containing the appropriate

shading.
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(a) Synthetic Image Data (b) Real Image Data

Figure 1. Synthetic image data and real LROC im-

age data comparison.

An example images made from real LROC WAC data

can be seen on the right in Figure 1.

Landmark Detection Network. The landmark de-

tection network is a standard YOLOv8m6 object detec-

tion network trained on synthetic images and validated

using real LROC images. While there may be better al-

ternatives for this task, the authors’ familiarity with this

framework allowed for rapid prototyping to determine if

further exploration is warranted.

Evaluation and Results. This section discusses the

evaluation of the landmark detection network and the re-

sults.

The landmark detection network training and valida-

tion results were recorded over time. The details shown in

Fig. 2, demonstrate the ability of the network to improve

performance on real data while training only on synthetic

data. Over 30 epochs, the network achieves a mAP50 of

0.824 and an F1 score of 0.74 at 0.192 confidence when

evaluated on real imagery. An example real image with

detections from the network is shown in Fig. 3.

Conclusions and Future Work. While there are

many avenues for improvement, this work has demon-

strated the viability of training a CNN on only synthetic

imagery to perform landmark detection on real Moon im-

ages. Some of the many options to explore include: in-

creasing the network size, improving labeling, improving

landmark selection, and changing the network setup en-

tirely.

Using a synthetic Moon model that we open source,

we can simulate virtually any lighting condition, location,

and camera model for training CNNs. These CNNs can

then be used directly on-orbit in future lunar missions,

opening the door for many new on-orbit applications in-

cluding optical navigation.

The following page contains a variety of additional ex-

amples of real and synthetic lunar images.

Disclaimer. The views expressed are those of the au-

thor and do not necessarily reflect the official policy or

position of the Department of the Air Force, the Depart-

ment of Defense, or the U.S. government.
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Figure 2. Training and validation metrics during

network training process.

Figure 3. Real image with detections from network.
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(a) Synthetic Image Data (b) Real Image Data

Figure 4. Synthetic vs Real Comparison

(a) Synthetic Image Data (b) Real Image Data

Figure 5. Synthetic vs Real Comparison

(a) Synthetic Image Data (b) Real Image Data

Figure 6. Synthetic vs Real Comparison

(a) Synthetic Image Data (b) Real Image Data

Figure 7. Synthetic vs Real Comparison

(a) Synthetic Image Data (b) Real Image Data

Figure 8. Synthetic vs Real Comparison

(a) Synthetic Image Data (b) Real Image Data

Figure 9. Synthetic vs Real Comparison

(a) Synthetic Image Data (b) Real Image Data

Figure 10. Synthetic vs Real Comparison

(a) Synthetic Image Data (b) Real Image Data

Figure 11. Synthetic vs Real Comparison
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