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Abstract. Simultaneous Localization and Mapping 

(SLAM) algorithms have demonstrated considerable 

efficacy in ground robotics applications. However, their 

application to space-based scenarios is constrained by 

many challenges, such as harsh lighting, large distances 

between the observer and the target, as well as on-board 

computational limitations. With the goal of enhancing 

resilience against conditions encountered in orbit, we 

incorporate line features as a stronger geometric 

primitive. The algorithm demonstrates increased 

performance on synthetic datasets generated specifically 

to capture these characteristics, as well as real-life 

imagery from a NASA proximity operation to the Hubble 

Space Telescope. 

Introduction. As the number of objects in orbit 

increases, it is essential for the future spacecrafts to have 

the ability to autonomously repair or remove the already 

deployed objects. Active Debris Removal (ADR) 

comprises one of the strategic goals of the European 

Space Agency (ESA), while In-Space Assembly and 

Manufacturing (ISAM) is the goal of various flight 

projects (e.g. OSAM-1, OSAM-2, Robotic Refueling 

Missions). These applications require increased 

autonomy and robustness of the Rendezvous and 

Proximity Operations (RPO) subsystems. 

We consider the problem of a Chaser (C) satellite and 

a non-cooperative Target (T) satellite that are located in 

different orbits and do not exchange any information 

between each other. The goal is for the C satellite to 

accurately estimate a map of the T satellite and localize 

itself with respect to T. 

The main sensor in our scenario is a monocular camera, 

which is a lightweight and inexpensive sensor, favored 

for space applications. A major drawback of this sensor 

is that it is heavily affected by lighting conditions. The 

sun being the sole lighting source in our case creates 

reflections, occlusions, and shadowing, which play a 

significant role in the quality of the image measurement. 

This leads even state-of-the-art Visual SLAM (VSLAM) 

pipelines to fail and lose track of the target1. One of the 

main reasons for this failure is the nature of feature 

points. Firstly, points are typically concentrated on a few 

planar surfaces, which results in a sudden loss of a lot of 

the features during the rotation of the target. Secondly, 

point features are not reliable under the described 

drastically changing lighting conditions, where even light 

self-shadowing can lead to the detection of non-existent 

features. To mitigate these effects, we employ line 

features in the VSLAM solution, which typically lie at 

the intersections of planes and can provide more reliable 

and useful information than points. 

We are building upon an existing solution of Asteroid 

Relative Navigation2, which is modified for the 

Spacecraft RPO scenario. Our algorithm receives images 

captured from a monocular camera on the C satellite. We 

wish to estimate the rigid-body transformation TTC 

between the arbitrary target-fixed frame T and the known 

chaser-fixed frame C, while also maintaining an estimate 

of the 3D point and line landmarks of the target satellite. 

Proposed Approach. We employ a keyframe-based 

SLAM approach and hence, the pipeline consists of three 

main modules: Frontend, Keyframe Selection, and 

Backend. 

Frontend. Point features are represented as ORB 

keypoints, which are efficient and robust against rotation 

changes and noise. Only the matched point pairs that 

respect the epipolar constraint within a threshold of 1 

pixel are considered to be inserted into the graph. Line 

Segments are detected in the images using the ELSED3 

algorithm, which is outperforming other traditional line 

detection approaches both in computational time and 

average precision. The algorithm also uses a pixel jump 

to connect line segments, which makes the detection 

more robust against self-shadowing and occlusions. 

Feature matching is based on the image gradients of the 

local area around each feature. In the spacecraft RPO 

scenario the images might be poorly textured, or suffer 

from sharp shadows and specular reflections. This might 

change the appearance of the target drastically over the 

course of even a few images and even though the features 

might still be detected, the change in their appearance 

might not allow for correct matching. We employ the 

Tracking submodule, which tracks the features across all 

of the input images. For a feature to be inserted into the 

graph it has to be tracked through all of the frames since 

the last keyframe, allowing for a small sliding window in 

the matching process. As a result, features are correctly 

matched in a frame-by-frame fashion and erroneous 

matches are excluded from the graph.  

Keyframe Selection. Downsampling the input images 

to be inserted in the optimization scheme is typically 

accomplished through hand-crafted heuristics regarding 

the spatial or temporal distance of the frames, their 

optical flow or the number of tracked features. Given the 

specific characteristics of the relative motion that the 

spacecraft RPO scenario possesses, we deem critical to 

incorporate multiple heuristics in our keyframe selection 

framework to ensure sufficient appearance change under 

various extreme cases, such as pure rotation or loss of the 

majority of the features. We utilize the following 

heuristics: 1) optical flow, 2) estimated parallax, 3) 

number of tracked features and 4) percentage of tracked 

features and based on the current values of the heuristics, 

we adapt their thresholds. 

Backend. We cast the incremental smoothing 

optimization problem as a factor graph using the iSAM2 
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engine4 within the GTSAM5 library framework. We 

encode the line segment measurements as nonlinear 

factors in the factor graph. The line segment endpoints 

are unstable, since they are highly affected by noise, 

occlusions and lighting conditions. Hence, we choose to 

use the corresponding infinite lines in our optimization 

scheme. The 3D lines are minimally parameterized by 

their orthonormal representation and the reprojection 

error is intuitively defined as the sum of the distances 

between the measured 2D line segment endpoints and the 

reprojection of the 3D line. 

Results. We provide qualitative results on the 

Frontend module’s performance based on the real-life 

dataset from the NASA STS-125 Servicing Mission 4 

(SM4) and quantitative results on the full pipeline based 

on a synthetic dataset of the Hubble Space Telescope. 

Frontend. In Fig. 1 we visualize the tracked features 

between two consecutive keyframes of the SM4 dataset. 

The left images correspond to the last keyframe, while 

the right images correspond to the current keyframe. As 

we can see, the point features (top) are concentrated in 

high-textured surfaces of the satellite, while line features 

(bottom) are able to capture information about all the 

parts of the target. 

 

 
Figure 1. Feature tracking results between consecutive 

keyframes. Top: Keypoints. Bottom: Line segments. 

 

Backend. We provide results regarding the localization 

performance of the pipeline (PL), when compared to the 

only-points version of it (P). Fig. 2 presents the position 

and Fig. 3 presents the attitude error as expressed in the 

Local Vertical Local Horizontal (LVLH) frame for a 

Blender dataset. The relative distance between the 

satellites is approximately 100 m throught the trajectory. 

We observe that the norm of both the position and 

attitude error decrease, which is a consequence of the 

higher quality and stronger geometric constraint enforced 

from the line features. Finally, Tab. 1 shows the Root 

Mean Squared Error (RMSE) of the position and the 

attitude. 

 
Figure 2. Position error (m) in LVLH. Rows 1-3 

indicate the across track, cross track, and radial 

directions, while row 4 shows the error norm. 

 

 
Figure 3. Attitude error (deg) in LVLH. Rows 1-3 

indicate the across track, cross track, and radial 

directions, while row 4 shows the error norm. 

 

Table 1. Error comparison between P and PL versions. 

The first number of each cell refers to position error 

(m) and the second number to attitude error (deg) 

 P PL % improvement 

AT 3.85 / 1.32 1.37 / 0.73 64.44 / 44.56 

XT 1.09 / 1.82 1.13 / 0.64 -2.90 / 64.67 

RAD 1.23 / 1.25 1.17 / 1.46 5.06 / -14.79 

norm 4.19 / 2.57 2.12 / 1.75 49.29 / 31.54 
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