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Abstract. Generative Artificial Intelligence (AI)

frameworks provide the means to sample from intractable

prior probability distributions. Conditional generative

models consider contextual information, such as degraded

data or partial observations, to effectively sample from

conditional distributions. We apply conditional genera-

tive AI to digital elevation models (DEMs) derived by Lu-

nar Orbiter Laser Altimeter (LOLA) measurements at the

Moon. Our Schrödinger bridge models are developed by

optimizing vision transformers with respect to datasets of

low-resolution DEMs and high-resolution optical imagery.

Trained models are leveraged for lunar topography super-

resolution, facilitating reconstruction of larger areas than

those feasible using analytical methods.

Introduction. A high-fidelity understanding of plan-

etary topography is necessary for accurate modeling of

surface conditions. This is of particular interest for areas

of potential future human and robotic exploration, such

as the candidate landing sites for the upcoming Artemis

missions.1 Altimetry measurements provided by LOLA

have been used to develop topography models at moder-

ate resolution,2 e.g., down to 20 meters-per-pixel (mpp)

near the lunar poles. However, higher-resolution topog-

raphy is needed in many regions of interest.

Analytical methods, such as Shape-from-Shading

(SfS),3,4 incorporate contextual information in the form

of high-resolution optical imagery, such as those pro-

vided by the Lunar Reconnaissance Orbiter Narrow-Angle

Camera (LRO NAC). SfS takes an a priori low-resolution

DEM as input alongside co-registered images at the tar-

get resolution, where each image is illuminated by the Sun

from a different direction. While such methods provide

statistical guarantees and interpretability of the output

high-resolution DEM, they are computationally expensive

and require human input (e.g., parameter fine-tuning).

As such, it is cumbersome to apply to large areas.

We implement generative-AI-based super-resolution

tools to develop accurate high-resolution DEMs on the

Moon. In particular, we apply the Image-to-Image

Schödinger Bridge (SB) method5 to the conditional gen-

eration setting, which has enjoyed considerable success

in super-resolution tasks. Our Image-to-Image SB trans-

forms a priori samples (low-resolution DEMs) to a poste-

riori high-resolution DEMs while considering a set of op-

tical images. Generative AI methods have the potential

to scale more efficiently to larger inputs than analytical

methods, and can generalize beyond the training dataset.

Data. We compiled a dataset of lunar topography

patches at 20 mpp extracted uniformly from LOLA

DEMs2 of both lunar poles, over latitudes poleward of

80°. Each DEM is a 96 by 96 pixel (1.92 km) array, and

we extracted 91,708 high-quality patches over the lunar

surface. These data capture fine-grained features of lunar

surface topography, representing a wide range of eleva-

tions and topographic features. For each DEM patch in

the dataset, we also render 30 simulated LRO NAC “im-

ages”. In each case, the DEM is illuminated from 30 Sun

angles randomly scattered throughout the sky.

Schrödinger Bridges. Generative modeling frame-

works aim to generate samples x0 from the intractable,

data-generating prior p0. The Image-to-Image SB

method5 defines the generative process by a bridge be-

tween the target p0 supported on X0 (the space of unob-

served data, e.g., high-resolution topography) and a sep-

arate distribution p1 supported on X1 (the space of ob-

served data, e.g., low-resolution topography). This pro-

cess is captured by the following Stochastic Differential

Equations (SDEs) in the data xt:

dxt = ft(xt)dt+
√

βtdwt, x0 ∼ Ψ̂(·, 0), (1)

dxt = ft(xt)dt+
√

βtdw̄t, x1 ∼ Ψ(·, 1). (2)

In (1) and (2), ft is a linear drift in xt, βt is a variance

schedule parameterizing the diffusion, and dwt/dw̄t rep-

resent Brownian motion in forward/reverse time. Time-

varying potentials Ψ and Ψ̂ are related to the boundary

distributions via Ψ̂(·, 0) = δ0(·) and Ψ(·, 1) = p1/Ψ̂(·, 1),
where δ0(·) is the Dirac delta distribution at x0 ∈ X0.

SBs are a generalization of Denoising Diffusion Prob-

abilistic Models (DDPMs);6 therefore, DDPM sampling

and optimization techniques can be borrowed. Ances-

tral sampling is employed to iteratively sample xt−1 ∼
p(xt−1|xt), where a neural network ϵ(xt, t; θ) parame-

terized by θ is used to approximate the parameters of

p(xt−1|xt). Letting ft = 0, the optimization objective is

L(θ;x0, x1, t) =

∥∥∥∥ϵ(xt, t; θ)− xt − x0
σt

∥∥∥∥ , (3)

where σ2
t =

∫ t
0
βτdτ , xt is tractable at training time given

x1 and x0. See the original work for details.5 In practice,

(3) is minimized via a stochastic gradient descent scheme

using mini-batches of boundary pairs x0 and x1 with t

sampled uniformly.

Finally, we extend SBs to consider additional condi-

tional information. By default, SBs transform the condi-

tional data x1 ∼ p1 into the target data x0 ∼ p0. Fol-

lowing other generative modeling works, and to consider

additional context y beyond x1, we allow the neural net-

work to be a function of y as well: ϵ(xt, t, y; θ). Besides

this change, the optimization and sampling scheme are

the same as those described earlier in this section.
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Figure 1. 16× topography super-resolution on a

76.8 km by 76.8 km region (3,840 pixels at 20 mpp)

near the lunar South Pole (hillshade shown). Com-

pute time is ∼2 minutes on 2 V100 GPUs. A

zoomed 192-pixel region is shown, including bicubic

interpolation and SB recovery.

Topography Schrödinger Bridge. In the lunar to-

pography super-resolution settings, p0 is the distribu-

tion of 96 × 96 pixel lunar topography maps at 20

mpp (i.e., X0 ⊂ R96×96) while p1 is the distribution of

lower-resolution DEMs at 320 mpp (i.e., X1 ⊂ R6×6).

Additional context is provided by the rendered images

y ∈ R96×96. The goal is to learn a sampling scheme which

transforms low-resolution DEMs x1 into high-resolution

DEMs x0 given a set of images Y = {yi}30i=1.

Latent Space. To improve modeling efficiency, we de-

velop a generative model operating in the latent space of

a Variational Auto-Encoder (VAE).7 VAEs learn a ran-

domized, invertible, low-dimensional embedding of data

using encoding/decoding neural networks. Latent genera-

tive models generate low-dimensional embeddings of data

from the target distribution, which can be decoded using

the VAE. We train a convolution-based VAE of approxi-

mately 20 million parameters on the high-resolution DEM

data, following the approach of latent diffusion.8 A SB is

trained on data within the latent space Z ⊂ R12×12×4.

Modeling & Optimization. The function ϵ(·; θ) is pa-

rameterized by a vision transformer9,10 (ViT) of 6 layers,

with 12 attention heads per layer, and patch size of 2 (la-

tent) pixels. The input is the latent representation of the

interpolated low-resolution DEM z1 ∈ Z and the set of

images Y. Each image yi ∈ R96×96 is input to a shared

convolutional encoder akin to the encoding arm of a U-

Net,11 composed of 4 layers with 2 residual blocks per

layer. The embedded yi are averaged before being input

to a ViT. The ∼150 million parameters are optimized us-

ing AdamW12 with learning rate 10−4, no weight decay,

batch size 256, and otherwise default PyTorch parame-

ters. This was conducted for 1,000 epochs on 4 Nvidia

V100 GPUs using 80% of the patches, which were aug-

mented by flipping along each axis.

Results & Application. The latent SB achieves a root-

mean-squared reconstruction error of 5.60 meters at 20

mpp over a holdout set of data (not included in training)

of 500 patches, while the 95th percentile is 11.1 meters.

The average slope error in the horizontal directions are

1.76° and 1.83°. The SB can be applied to large areas via

tiling. The reconstruction of each pixel over a large area

can be averaged over a sliding window of outputs from the

SB; such a result is shown in Figure 1. Given that the

sampling scheme is stochastic, a distribution of outputs

can be generated for each location, and statistics of these

outputs can provide pixel-level error estimation.

Summary. We have extended SBs to consider addi-

tional conditional information to model within the latent

space of a VAE for super-resolution of lunar topography.

This approach yields reasonable reconstruction for 16×
super-resolution and can be extended to arbitrarily large

areas via a sliding window scheme.
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