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Abstract. On-orbit servicing, spacecraft inspection,

and active debris removal missions require precise opera-

tions near non-cooperative space objects, posing risks for

manned missions and challenges for ground control. We

propose an autonomous method for mapping and detect-

ing satellite components, using 3D Gaussian splatting for

learning a 3D satellite representation, rendering virtual

views, and ensembling a YOLOv5 object detector over

those views. Our low-compute pipeline can be run on-

board, enabling real-time characterization to facilitate au-

tonomous rendezvous and proximity operations.

Introduction. The rising threat of space debris neces-

sitates autonomous rendezvous and proximity operations

(RPO) for on-orbit servicing (OOS) and active debris re-

moval (ADR). These operations aim to manage or remove

large defunct satellites, which form the majority of space

debris. The complexity and delays in ground-based con-

trol demand full autonomy for these missions. This article

outlines an approach to characterize and detect satellite

features to enable autonomous RPO. The method: (1)

construct a 3D satellite scene using 3D Gaussian Splatting

based on the images captured along an inspection orbit,

(2) generate synthetic images from various perspectives,

and (3) ensemble YOLOv5 across these images for precise

satellite feature recognition. The system is designed for

low-power spaceflight hardware and includes innovations

like systematic 3D rendering, a rendering-based detection

ensemble, and realistic hardware-in-the-loop experiments.

Methods. This section provides further details on the

methods used and developed herein.

Datasets. We use two datasets. The Web Satellite

Dataset (WSD) for training YOLOv5 where solar pan-

els, antennas, thruster and body are annotated. The

hardware-in-the-loop (HIL) dataset contains images of a

satellite mock-up captured on the ORION testbed1 un-

der realistic lighting and motion conditions. The satellite

mock-up yaws 360◦ to simulate a station keeping maneu-

ver. The chaser captures images positioned 5 ft away

at 5◦ increments. Chroma key compositing with a green

screen is used to remove background artifacts.

3D Gaussian Splatting (3DGS). 3DGS3 learns a 3D

representation of a scene using 3D Gaussian points us-

ing several images from different viewing angles. It

initializes an initial 3D point-cloud representation of a

scene based on given input images using Structure-from-

Motion. 3DGS treats each point as a 3D Gaussian dis-

tribution with a mean equal to the point’s position and

a covariance matrix that determines the shape and ori-

entation of the distribution. Each Gaussian density is

projected onto the desired view frame to create “splats”

Figure 1. WSD Annotations2

of visual primitives like colors and textures. The contri-

butions of the splats are accumulated to render the final

image. The shape and size parameters of the Gaussians

are optimized by constrained stochastic gradient descent

and the number of points is manipulated by an adaptive

density control technique periodically during training.

Camera Generation. Given n initial camera poses rep-

resented by their transformation matrices, we will gen-

erate novel camera viewpoints around a synthetic ren-

dezvous path. We estimate a reference point p ∈ R3

that all initial cameras are roughly pointed towards (the

camera attention center) as a nearest point problem for-

mulated as a least-squares problem:4

min
p

∥Ax−C∥22, (1)

where C ∈ R3n×1 is a column vector that con-

catenates all camera positions [c⊤1 , c⊤2 , . . . , c⊤n ]⊤, x =

[p⊤, a1, a2, . . . , an]
⊤ is the solution vector containing p,

and A ∈ R3n×(n+3) is a specially constructed block ma-

trix encoding the forward vectors of each camera.

We generate novel poses per initial camera via several

methods: (1) circular of radius r in the plane orthogonal

to p − ci, centered at the original ci, sampled randomly

or uniformly, and (2) spherical on a sphere of radius r

centered at the original ci, sampled randomly or semi-

uniformly using a Fibonacci lattice.5 See Figure 2.

YOLOv5 Ensembling. YOLOv56 is a single-stage ob-

ject detector selected as it shows the most success at un-

known satellite component detection,2 though it is im-

perfect. Further, we choose the “small” architecture, as

it can run at sufficient framerates on current spaceflight

hardware. We train YOLOv5 on the WSD.2 We test on

a real-life mock-up of a satellite in two cases: (1) known

satellite where the object detector has seen some views

of the mock-up during training, and (2) unknown satel-

lite where the object detector has never seen the mock-up

during training.
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Table 1. SatSplatYOLO Results for Camera Sampling Techniques

Known Satellite Unknown Satellite

Cameras Radius Precision Recall mAP@0.5 Precision Recall mAP@0.5

Circular 0.5 0.728 0.704 0.701 0.455 0.400 0.421

(uniform) 1.0 0.633 0.596 0.603 0.435 0.339 0.386

Spherical 0.5 0.711 0.688 0.684 0.475 0.400 0.433

(Fibonacci) 1.0 0.740 0.604 0.652 0.590 0.384 0.485

Ground Truth N/A 0.770 0.728 0.758 0.544 0.384 0.432

Figure 2. Cameras perturbed about from the origi-

nal camera position circularly and spherically

We propose a novel ensembling technique to improve

performance. For each ground truth camera view, we gen-

erate 64 renders on which YOLOv5 detects satellite com-

ponents and we ensemble the detections to enhance the

original detections. The synthetic detections experience

an consistent translation offset due to the approximation

of the nearest point algorithm (Figure 6). We perform

a translation correction by mapping the mean bounding

box from the detection groups to high-confidence (> 0.95)

YOLOv5 predictions on the original images. We then

group shifted detections the renders with high intersec-

tion over union (IoU), assign group class prediction based

on purity (the fraction of classifications agreeing with

the majority), discard small and low-purity groups, and

merge redundant groups based on IoU.

If a detection group coincides in location with an origi-

nal detection, the confidence is max(conf, purity), bound-

ing box is updated to a weighted average (by confidence)

of the original and group mean bounding boxes, and as-

sign the group-predicted class. If a detection group does

not coincide with the location of an original detection, we

make a new prediction to correct original model’s likely

false negative. We further remove ground truth predic-

tions that do not coincide with a detection group, sup-

pressing false positives.

Results. 3DGS is trained to produce a 3D represen-

tation of the scene by the approach of Nguyen et al.7

The resulting quality of that work is replicated, achieving

0.9213 SSIM, 25.52 PSNR, and 0.0796 LPIPS.

SatSplatYOLO results are shown in Table 1 for some

experimental cases. The left half of the table is for a

known satellite and the right half is for an unknown satel-

lite. We try two camera generation techniques, each with

two radius values. We document the precision, recall,

mAP@0.5 for each model. SatSplatYOLO improves re-

sults for unknown satellites significantly, but performance

on known satellites is better without SatSplatYOLO.

Conclusion. The proposed a method SatSplatYOLO

detects components of satellites robustly by learning a

3D representation of the model based on image data cap-

tured through one inspection orbit, rendering novel views

of the satellite, and ensembling YOLOv5 over them. The

computational costs are sufficiently low to feasibly run on

near-term spaceflight hardware.

Further study of the positioning of the synthetic cam-

eras, the number of renders that are required, and details

of the inspection orbit could improve the accuracy and

run times of the method. Implementation on edge hard-

ware and software optimizations could further decrease

computational complexity.

This method also provides a first step to reliable pose

estimation of unknown non-cooperative satellites. Esti-

mating the pose of the spacecraft this way provides more

confidence than most methods in the literature as it pro-

vides a holistic understanding of the scenario.
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Figure 3. ORION Testbed1 (left) and image capture path (right)

Figure 4. Green screen-based chroma keying to remove the background

Figure 5. High quality render of true camera (center) and two generated cameras

Figure 6. YOLOv5 inferences on the original image (left: note a mistaken antenna prediction coupled

with the correct body prediction), the 3DGS renders (center: note the translation errors), and final

SatSplatYOLO predictions (right).
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