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Abstract. A Gaussian Process Sequential Filter

(GPSF) is developed for Simultaneous Localization and

Mapping (SLAM). The GPSF models the small body shape

through spatially correlated basis nodes and radii, and si-

multaneously estimates the body’s shape, orientation, and

spin, along with the spacecraft’s relative position and ve-

locity. The formulation of the GPSF is provided, includ-

ing the root-solved analytic partials, measurement under-

weighting techniques, and covariance inflation methods.

The performance of the GPSF is highlighted with a Monte

Carlo study about multiple small bodies, including Lutetia,

Eros, Toutatis, and Bennu.

Introduction. Stereo-Photoclinometry (SPC) has

proven successful for mapping and relative terrain nav-

igation1,2 in a variety of missions, including the Dawn

mission to Ceres and Vesta3,4 and the OSIRIS-REx mis-

sion to Bennu.5 However, SPC is computationally in-

tensive and requires considerable ground team support.

Autonomous spacecraft reduce ground costs and time for

maneuver planning. Here Simultaneous Localization and

Mapping (SLAM) algorithms are implemented as a step

towards the ultimate goal of unsupervised approach and

navigation.

Significant work has been dedicated to the theory of

small body shape modeling, including LIDAR imagery to

track landmarks on Eros,6 flash LIDAR imagery about

Itokawa,7 infrared imagery of Bennu,8 and light-curve

inversion.9,10 Preliminary work by the authors imple-

mented silhouette-based measurements for SLAM appli-

cations.11–13 Silhouette-based measurements are readily

produced by onboard visible spectrum cameras and can

be used as direct measurements of the central body’s con-

vex hull. Silhouette-based measurements are thus well-

suited for autonomous SLAM applications. This work

presents the cumulative work of the authors to produce a

sequential filter that incorporates silhouette-based mea-

surements for SLAM applications about small bodies.

To reduce the computational intensity of the shape

model, a Gaussian Process (GP) is implemented to

model the small body’s shape with basis nodes and radii.

Wahlstrom and Ozkan introduced a sequential GP esti-

mation filter for target tracking,14 and we have imple-

mented the GP technique for shape and pole estimation

of Eros.11,12 A GP Iterated Extended Kalman Filter was

developed in a SLAM algorithm to also simultaneously

estimate the observing spacecraft’s relative position and

velocity.13

The complete development and derivation of the GP

Sequential Filter (GPSF) is thus presented. The GPSF

incorporates silhouette-based measurements to simultane-

ously estimate the spacecraft’s relative position and ve-

locity, while estimating the small body’s pole, spin, and

shape. The methodology of modeling small bodies with

GP nodes and radii are described and implemented into

the filter. The GPSF incorporates the complete analytic

measurement partials to account for data association sen-

sitivities. The GPSF underweights measurements to ac-

count for measurement nonlinearity and data association

error. As SLAM filters often become overconfident,15,16

the GPSF incorporates covariance inflation to ensure filter

pessimism. As a proper Monte Carlo analysis, where the

truth is perturbed based on a statistically consistent co-

variance matrix,17 is yet to be performed, the main objec-

tive of the current paper is to fill this important gap in the

sequential filter design and validation process. The Monte

Carlo studies are performed about multiple small bodies,

including Lutetia, Eros, Toutatis, and Bennu. The ini-

tial covariances for the Monte Carlo studies are obtained

through a maximum likelihood GP Batch Filter,18 which

ensures that the highly correlated elements of the GP

states are consistent.

Gaussian Process Small Body Shape Modeling.

The small body shapes are modeled via GP regression.

The GP regression models the entire body with radii at

discrete nodes and a covariance function (or kernel func-

tion). More basis nodes and radii increase the fidelity of

the shape model, as illustrated in Fig. 1

Figure 1. GP shape modeling on a representative

2D body.

The GP basis set, or simply the basis set, consists of

nodes as unit vectors e′ and their associated radii f ′. A
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single basis node is denoted as e′, whereas the set of n

basis nodes are denoted as a 3 by n matrix E′:

E′ =
[
e′1 e′2 · · · e′n

]
. (1)

The basis set, denoted with a prime, is used to predict

the radii f at a set of measured nodes E according to the

GP prediction equation:19

f(E) = C(E,E′)C−1(E′,E′)f ′, (2)

where C(·, ·) is the GP covariance function (kernel func-

tion). The covariance function aids in representing com-

plicated, multi-dimensional data simply; for greater de-

tail on GPs and covariance functions, see Rasmussen and

Williams.19 Thus, GP regression models the entire shape

of the small body with just a few nodes, radii, and their

kernel function, making them well-suited for autonomous

navigation.

The GPSF and GP batch filter12,13,18 previously im-

plemented a covariance function that correlates nodes

through their angular distance according to

Cn,m(E,E′) = σ2
c exp

(
−acos(ET

nE
′
m)

l2

)
, (3)

where C(·, ·) is a matrix with each element analyzed at

the nth and mth node of the inputs. Thus, the dimen-

sion of the covariance function depends on the number of

input nodes. The strength of the correlation decays with

increasing angular distance between two nodes. The scal-

ing factor l adjusts the spatial correlation’s strength, and

σ2
c scales the entire covariance function. The GPSF op-

erates as desired using the covariance function in Eq. 3,

and is able to fully estimate the central shape. However,

when a measurement is processed at a basis node (e = e′),
a singularity is exhibited when taking the measurement

partials. This singularity is clearly seen below when ana-

lyzing the measurement partials analytically in Appendix

D. While no true singularity typically occurs during sim-

ulation, numerical issues arise causing poor estimation

performance. Thus, the GPSF no longer incorporates the

covariance function in Eq. 3.

Different covariance functions yield different predic-

tions, and some are better suited to specific scenarios than

others.20 A common choice is the Radial Basis Function

(RBF), or Gaussian Kernel:

Cn,m(E,E′) = σ2
c exp

(
−||En −E′

m||2

l2

)
. (4)

The RBF kernel has no singularities associated with its

measurement partials. However, the RBF kernel suffers

from instability due to numerical precision with its rank.

When implemented within the GPSF, the RBF yields

poor shape representation and is unable to accurately cap-

ture the truth state.

The current GPSF thus utilizes a rectified version of

the covariance function in Eq. 3, maintaining previous

filter performance while avoiding errors associated to sin-

gularity proximity. The rectified covariance function is

Cn,m(E,E′) = σ2
c exp

(
acos(κ)−acos(κET

nE
′
m)

l2

)
, (5)

where 0 < κ < 1. The rectification avoids any singu-

larities within the measurement partials, and maintains

autocorrelation when E = E′. For all simulations pre-

sented, the rectification is set at κ = 0.999999. Setting

κ = 1 makes Eq. 3 and Eq. 5 equivalent. Further detail

on the rectified kernel’s singularity avoidance is found in

Appendix A.

Thus, a small body is modeled by a tractable GP ba-

sis. Consider Fig. 2, depicting Eros modeled with a high

fidelity polyhedral model. The GP regression aims to

model this high fidelity shape with fewer basis nodes.

Figure 2. High Fidelity Polyhedral Model of Eros

The shape of Eros is similarly captured using GP re-

gression with far fewer points. Figure 3 depicts GP mod-

els of Eros with spherically distributed basis nodes. Note

that adding nodes to the GP basis set increases the shape

model fidelity. While greater shape fidelity is desired,

increasing the number of states significantly slows down

the filter. Currently, the basis nodes are distributed by

evenly spacing the nodes on a unit sphere. When ba-

sis nodes are spherically distributed, increasing the num-

ber of basis nodes demonstrates significant diminishing

returns. Illustrated in Fig. 3, few nodes are distributed

along the extreme ends of Eros. Thus, a spherical dis-

tribution of basis nodes is not the best distribution for

elongated or highly non-spherical bodies such as Eros.

To best utilize the basis nodes, a mission may initially

model the small body with spherically distributed nodes,

but rearrange the basis nodes once the GPSF obtains a

shape estimate. An improved distribution of basis nodes

is an area of ongoing research.

The truth shapes used in simulation are modeled as a

GP with 300 basis nodes, see Fig. 3c. Monte Carlo analy-

sis requires randomly perturbed shapes from a prior dis-

tribution, i.e., randomly sampled radii at the basis nodes.

We use a maximum likelihood GP batch filter21 to pro-
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duce GP prior distributions that can be randomly sam-

pled. Further details on the batch estimator are provided

below. The truth shape models used in the batch pro-

cess are obtained from GP regression with high fidelity

polyhedral models. The high fidelity shape models are

obtained from NASA’s Planetary Data System, pulled

from Clark22 and Hergenrother23 for Bennu, Hudson24

for Toutatis, Gaskell25 for Eros, and Gaskell and Carry26

for Lutetia.

(a) 32 Node GP Shape Model of Eros

(b) 132 Node GP Shape Model of Eros

(c) 300 Node GP Shape Model of Eros

Figure 3. GP Shape Models of Eros

The silhouette-based measurements are generated di-

rectly from the GP modeled shapes. Previous work dis-

cussed the methodology to process images of the aster-

oid’s real shape and convert the data to lower fidelity GP

shapes,13 akin to processing real-time gravitational accel-

eration with a finite set of Stokes’ coefficients. Here the

truth data and images are simulated using the GP truth

models directly, akin to modeling the true dynamics with

a finite degree of spherical harmonics model. Greater de-

tail on image generation is provided when discussing the

pinhole camera measurement function.

Silhouette-Based Measurements. Silhouette-

based measurements are generated by extracting the visi-

ble edge from an image of the partially illuminated body.

Figure 4 depicts a Blender simulated image of a partially

illuminated Eros.27 An image processing tool then ex-

tracts the longest continuous edge, obtaining the visible

edge of the body.13 The GPSF has successfully imple-

mented this measurement generation technique,13 demon-

strating feasibility of a suitable image processing pipeline,

though future work is needed in this area to address more

of the challenges associated with working with real space-

craft imagery. Blender simulations are, however, time

consuming, especially when the true asteroid’s shape and

orientation are perturbed for hundreds of Monte Carlo

simulations.

Figure 4. Blender Simulated Image of Eros

Alternatively, Fig. 5 depicts a simulated image from

the new, customized measurement generation algorithm

in MATLAB. Thousands of points on the truth shape are

projected into the image plane, and MATLAB’s boundary

command provides a discrete set of points representing

the potential visible edge. For each boundary point, a

ray is traced from the point toward the Sun. Rays traced

from self-shadowed boundary points will cross into the

small body, and are thus not along the visible edge. The

gold line in Fig. 5 depicts the calculated visible edge af-

ter trimming and checking for self-shadowing. Note the

customized routine provides a visible edge similar to the

Blender image in Fig. 4.

The new measurement generation routine readily pro-

duces silhouette-based measurements for any small body

and mission scenario, ideal for Monte Carlo simulations.

Each Monte Carlo generates measurements from a ran-

domly perturbed shape, and incorporates the data into
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the GPSF. Note that the described customized routine

assumes perfect knowledge of the truth state to create

truth measurements, and is thus only used for simulation

purposes.

Figure 5. MATLAB Simulated Image of Eros

Pinhole Camera. The measurement equation is based

on a pinhole camera where discrete points along the

three-dimensional visible edge are projected into the two-

dimensional camera plane. The measurement equations

are expressed as: xj
yj
zj

 = s = T I
C

[
TA

I rAej/a − rIs/a

]
, (6)

h(x) =

[
uj
vj

]
= Mρ(s) = M

 −xj/zj
yj/zj
1

 , (7)

where M denotes a linear mapping corresponding to the

pinhole camera’s field of view and geometric parameters,

rI
s/a the relative position of the spacecraft with respect to

the asteroid in the inertial frame, rA
e/a the position of a

visible edge point relative to the asteroid in the asteroid

fixed frame, calculated with

rAej/a = fjej . (8)

The rotation matrix T I
C maps the inertial frame to the

camera frame. The rotation matrix TA
I maps the asteroid

frame to the inertial frame. The subscript j denotes the

jth data point along the visible edge.

The MATLAB boundary routine generates measure-

ments using the truth state and Eqs. 6-7. The pinhole

camera equations also generate predicted measurements,

but requires a procedure to associate each measurement

to a predicted measurement.

Data Association. Each discrete measurement, gener-

ated along the visible edge of the shape, needs to be

associated to a body fixed location, generating a pre-

dicted measurement. A perfect data association pro-

cedure would correctly match a predicted measurement

with its corresponding node e. However, the correct

match is not known to the filter, necessitating a data as-

sociation procedure.

The GPSF uses geometric constraints to match a point

on the silhouette to a point along the edge of the pre-

dicted projection of the body’s shape. The unit vector

pointing from the spacecraft to the asteroid’s visible edge

can be extracted from the vector ρ(s). This unit vector

is here denoted as ia. A search plane for data associa-

tion is defined by ia and the estimated position vector r̂

according to

ζ = r̂ × ia, (9)

where ζ represents the vector normal to the search plane.

The unit vector of the state position estimate r̂ is denoted

as ir̂. The unit vector ir̂ is rotated within the plane by

a rotation angle γ to generate estimated measured nodes

according to:

Γζ = expm
([
iζ×

]
γ
)
, (10)

e = T I
AΓζir, (11)

where [·×] denotes the cross-product matrix, and Γζ the

matrix applied to rotate ir in the plane. An exact expres-

sion for the matrix exponential exists for skew-symmetric

matrices, such that

Γζ = I + sin(γ)
[
iζ×

]
+ (1− cos(γ))

[
iζ×

]2
. (12)

Using Eq. 12 is faster computationally than numerical

techniques to calculate the matrix exponential, and is use-

ful for the measurement partials.

The associated measurement node e then predicts the

estimated radii using the GP regression equation in Eq.

2. The rotation angle γ is obtained by minimizing the

objective function with respect to γ13

J(γ) = − f(e(γ)) sin(γ)√
f2(e(γ)) + r2 − 2f(e(γ))r cos(γ)

. (13)

Minimizing the J(γ) provides the visible edge of the cen-

tral body. Thus each measured data point is associated to

an estimated measurement through the data association

algorithm.

The data association process is known to be naive, as

the truth node is not guaranteed to lie in the search plane.

Thus, the node produced by the data association pro-

cess for the predicted measurements is expected to devi-

ate from the true node. This difference is referred to as

data association error, expressed in Eq. 14

∆e = e− ê. (14)

Data association errors within the image plane are ex-

pected to shrink as the position and pole state estimates

converge to the truth. Out of plane data association er-

rors are typically due to shape estimate errors, causing

the shape estimate to be updated incorrectly. Due to

the nature of SLAM algorithms,13,15,16,21 large, incor-

rect updates to the shape will also cause the remaining

states to diverge.
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More sophisticated means of data association have been

formulated, but significantly increase the filter’s run-time

to undesirable levels for autonomous missions. To ac-

count for the data association error, the input nodes and

output radius can be treated as stochastic processes,28,29

and an appropriate compensation added to underweight

the measurements. Provided a covariance exists for the

distribution of ∆e, it can then be linearly mapped to the

measurement space according to

U = HePeHe
T , (15)

where Pe denotes the data association error covariance,

and He denotes the partial of the measurement function

with respect to a measured node. However, no covariance

of the data association error is readily available. Further-

more, the errors are non-Gaussian, and demonstrate no

identifiable pattern.

Previous work with the GP batch filter demonstrated

that compensation for the data association error can be

achieved by underweighting the measurements.18 While

the covariance Pe is not known, steps are taken to con-

servatively apply measurement underweighting based on

the technique in Eq. 15. This technique is described in

greater detail in a later section with the GPSF’s measure-

ment underweighting.

Mapping data association errors from the input nodes

to the measurement space requires the measurement par-

tials. Previous work on the GPSF utilized numerical,

complex step partial derivatives,13,30 which are slow and

do not provide intermediate partials, such as He needed

for the data association compensation. As such, the steps

taken to obtain the complete, root-solved analytic partials

are provided below.

Measurement Partials. This section summarizes the

process of deriving the measurement partial derivative.

The full results are provided in Appendix A. The mea-

surement equation with data association is a function of

the state x, the jth measured radius fj , node ej , and

optimization angle γj :

h
[
x, ej(x, γj(x)), fj(x, ej(x, γj(x)))

]
. (16)

Thus, the measurement derivative of the jth data point

with respect to a state element xi can be found through

the chain rule according to:

dh

dxi
=

∂h

∂xi
+

∂h

∂e

(
∂e

∂xi
+

∂e

∂γ

∂γ

∂xi

)
+

∂h

∂f

(
∂f

∂xi
+

∂f

∂e

(
∂e

∂xi
+

∂e

∂γ

dγ

dxi

))
, (17)

where the j subscript is dropped for compactness. Previ-

ous implementations of the GPSF omitted the root-solved

partials with respect to γ.11–13 Finding the measure-

ment partials numerically with the root-solved compo-

nents proves to be time consuming, as additional runs

of the data association routine are required. Fixing the

optimization angle γ, and thus omitting the root-solved

partials, permits the use of fast, complex step numeri-

cal derivatives.30 For numerous simulations, omitting the

root-solved partials can be justified by the inequality

∂e

∂xi
≫ ∂e

∂γ

dγ

dxi
. (18)

However, assuming the root-solved partials are always in-

consequential yields issues with robustness. Furthermore,

including the root-solved partials has been demonstrated

to generally improve filter performance. As such, the com-

plete set of partials is implemented.

Furthermore, calculating the analytic partials is ap-

proximately 500-1000 times faster than calculating them

numerically. This significant runtime improvement marks

a significant step towards implementing the GPSF for au-

tonomous SLAM applications.

Gaussian Process Sequential Filter. The GPSF es-

timates the state vector

x =
[
rT vT α δ θ̇ θ0 f ′T ]T

, (19)

where r and v denote the spacecraft’s position and veloc-

ity with respect to the asteroid, α and δ the right ascen-

sion and declination of the asteroid axis of rotation, θ̇ the

asteroid’s spin about the prime meridian θ0, and f ′ the
basis radii of the asteroid at the predetermined basis set

E′. Recall the basis nodes and radii are marked with a

prime to distinguish between measured and basis values.

The pole elements map the inertial frame to the aster-

oid frame using Euler angles according to the direction

cosine matrix

T I
A = T 3(θ̇t+ θ0)T 1(

π
2 − δ)T 3(

π
2 + α), (20)

where T 1 and T 3 with arbitrary input ϕ are:

T1(ϕ) =

 1 0 0

0 cos(ϕ) sin(ϕ)

0 − sin(ϕ) cos(ϕ)

 , (21)

T3(ϕ) =

 cos(ϕ) sin(ϕ) 0

− sin(ϕ) cos(ϕ) 0

0 0 1

 . (22)

The GPSF is derived from nonlinear conditional proba-

bility and follows the propagation and update steps of an

iterated extended Kalman filter.17,31,32 The state covari-

ance is propagated forward according to

P k+1 = Φk+1,kP kΦ
T
k+1,k, (23)

where Φ is the State Transition Matrix, calculated by

propagating forward along the estimated trajectory us-

ing 2-body gravitational relative motion. The state is

updated according to:

K = P−HS−1, (24)

x̂+ = x̂− +K(z − h
(
x̂−)), (25)
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where the superscripts “−,+” denote before and after a

measurement update, respectively. The state covariance

is updated according to

P+ = (I−KH)P−(I−KH)T +KR∗KT + P lb, (26)

where R∗ is later defined when discussing measurement

underweighting. The matrix P lb serves as a lower bound

on the filter covariance, commonly applied to artificially

inflate the filter covariance in SLAM filters.15,16 It is

common in SLAM applications for the filter to become

over-confident, especially with respect to the states asso-

ciated with the measurement source.15,16 This pattern

results in the GPSF becoming over-confident in estimat-

ing the central body’s shape. Thus, the matrix P lb is

set as a diagonal matrix with non-zero elements for the

shape states. Ultimately, the covariance inflation imple-

mented through P lb ensures the GPSF does not become

over-confident, while also decorrelating the shape states

after update.

The innovation covariance S, classically formulated as

S = HP−HT +R, includes additional terms to under-

weight the measurements. The process of simultaneously

estimating the state in Eq. 19 is a sensitive process, where

large state updates can cause the filter to diverge from the

truth. Thus, the GPSF utilizes the combined innovation

covariance:

R∗ = βHP−HT +HfCHf
T +R+U +L, (27)

S = HP−HT +R∗, (28)

where R is the measurement noise covariance

R = σ2
ρI. (29)

The scalar β serves to approximate the innovation weight

that would be applied in a second order EKF using Lear’s

method.33,34 The matrix C arises from GP regression

errors, and are mapped to the measurement space with

Hf . The matrices L and U serve as a measurement re-

jection scheme and data error compensation, respectively.

These measurement underweighting schemes are further

described in detail here.

GP Regression Error. Shape modeling with GP regres-

sion requires calculating the conditional probability of the

measured radii to the basis radii. Originally proposed

by Wahlstrom and Ozkan for extended target tracking,14

the covariance of the measurements z conditioned on the

measured radii is expressed as:

C = C(E,E)−C(E,E′)C−1(E′,E′)C(E′,E), (30)

Pz|f = HfCHf
T . (31)

The conditional probability is then added to the inno-

vation. For further detail on the derivation of the con-

ditional probability, see the original work by Wahlstrom

and Ozkan14 and previous work on the GP filter.11–13,21

The scale of the covariance in Eq. 31 is determined

by σ2
c i.e., the vertical scale in Eq. 3. When the true

shape is not modeled as a GP, or modeled with more

nodes than the estimated shape, the scaling factor should

be properly tuned. However, as the truth shapes are here

modeled with the same number of nodes as the estimated

shapes, σ2
c can be quite small. Furthermore, small val-

ues of σ2
c are recommend by Whalstrom and Ozkan when

measurements are produced by the target’s surface, as is

the case for silhouette-based measurements.

The strength of the correlations is determined by l, or

the horizontal scale. The l factor is crucial, as it allows

for the entire shape to be updated with silhouette-based

measurements. Regions of the surface that experience

constant shadowing, such as craters, can still be estimated

when incorporating a larger l scale, though caution is re-

quired as no direct observations of these regions are avail-

able. The GPSF thus incorporates errors associated with

GP regression.

Measurement Rejection. A measurement rejection

scheme is implemented to mitigate filter divergence. The

scheme follows the idea set forth by Navon,35 where mea-

surements are rejected through additional underweight-

ing. The measurements are rejected by checking the nor-

malized innovations according to

δzi =
zi−ẑi√

Sii
, (32)

li =

{
1, for δzi > 3,

0, otherwise
(33)

L = cl · diag(l). (34)

The parameter cl varies the strength of the measurement

rejection. The measurement rejection matrix L is then

added to the innovation covariance. Note the measure-

ment rejection scheme is applied using the innovation S

prior to other underweighting sources.

Lear’s Method. To account for nonlinearities associated

with the measurement equation, the GPSF utilizes Lear’s

method to provide a conservative estimate of the covari-

ance from a second order Kalman filter.34 The under-

weighting is done to provide a lower-bound estimate to

the second order weight matrix B, according to

β · trace
(
HPHT

)
≥ trace (B) . (35)

When the second order measurement partials are known,

β can be calculated to ensure the inequality in Eq. 35

holds. It is difficult to select a β that satisfies the inequal-

ity for all measurements, since the second order terms are

not known.

The GPSF implements an adaptive approximation of

βk at time tk according to13,34

βk = β0
trace(P k)

2

trace(HkP kH
T
k )

trace(H0P 0H
T
0 )

trace(P 0)2
. (36)

Previous implementations of the GPSF used β0 = 0.2,

justified by the successful implementation on the space

shuttle.33 However, numerically calculating the second
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order measurement terms according to Roth and Gustafs-

son36 has shown that β0 ≈ 0.01 is sufficient to satisfy

Eq. 35 at t0 for Eros. Thus the term βkHkP kH
T
k is

added to the innovation covariance at tk to account for

measurement nonlinearity.

Data Association Error Underweighting. The data as-

sociation can incorrectly match measurements with points

on the edge of the predicted image. This produces errors

in the GPSF-estimated shape. In order to account for

data association errors, a measurement underweighting

scheme is introduced that treats the node error as white

noise.

The node error covariance Pe is a 2×2 matrix expressed

as

Pe = σ2
e · I, (37)

where σe represents the data association error in latitude

and longitude in the body fixed frame. To conservatively

approximate the data association errors, each data point

is underweighted according to

U =
||HePeHe

T ||
nm

· Inm , (38)

where nm is the number of data points of an image. This

technique applies a weighted average to underweight each

measurement point. The matrix U is then added to the

innovation covariance.

The strength of this underweighting scheme is depen-

dent on the input σ2
e . The data association errors are

known to decrease as the estimated state converges to

the truth. Thus, the value σ2
e used in Eq. 37 is a function

of time according to

σ2
e(tk)=σ2

e(t0) exp

[
5

(
1−

trace(Prf (t0))

trace(Prf (tk))

)]
+ σ2

elb , (39)

where Prf denotes the condensed state covariance, con-

sisting only of the position and shape elements. The

term σ2
elb enforces a lower bound. Equation 39 causes the

data association noise to decrease as the filter covariance

shrinks.

Various schemes can be used to change the data asso-

ciation noise over time with various degrees of efficacy.

The exponential decay method in Eq. 39 is chosen based

on how the position and shape errors converge with a

perfect data association Monte Carlo study. Future work

includes alternative methods to compensate for data as-

sociation errors.

Filter Tuning Parameters. The GPSF has multiple

tuning parameters, summarized in Table 1. Without

properly tuning these additional parameters, the GPSF

produces optimistic estimates that may not converge to

the true states. The parameters are tuned in order to

provide estimates that converge to the truth, but do so

slowly and conservatively. Greater detail is provided be-

low when describing the simulation setup what values are

appropriate for small body SLAM applications.

Table 1. GPSF Tuning Parameters

Symbol Adjusts Units

σc Kernel Vertical Scale km

l Kernel Horizontal Scale −
σρ Measurement Noise Pixels

β0 Lear’s Method −
σe,σelb Data Association Error Radians

cl Measurement Rejection Pixels

P lb Filter Covariance Lower Bound km2

Monte Carlo Simulation Setup. Each Monte Carlo

test randomly samples from the prior distribution to per-

turb the truth state from an initial, nominal state. The

gravitational parameter, spin rate about the prime merid-

ian, and average radius for Lutetia, Eros, Toutatis, and

Bennu are provided in Table 2. The gravitational param-

eters and spin rate are obtained from NASA’s Planetary

Data System.37 Note that the spin is assumed to be about

a single axis starting at the prime meridian, despite some

demonstrating non-principal axis rotation.24 The mean

radii are calculated from the 300 GP radii states. Each as-

teroid is modeled as a point mass with the gravitational

parameter. Future work will incorporate non-spherical

gravity for mission phases with lower altitudes.

Table 2. Asteroid Parameters

Asteroid µ
[
km3

s2

]
fmean [km] θ̇

[
deg
hr

]
Lutetia 1.14× 10−1 48.15 44.07

Eros 3.92× 10−4 7.33 68.31

Toutatis 1.27× 10−6 1.15 2.77

Bennu 4.87× 10−9 0.25 84.19

Each trajectory is a circular, polar orbit with a period

of 52 hours. For each simulation, an image is taken and

processed at 30 minute intervals. The total simulation

time is set to one week, about 3.23 orbital periods. The

lighting conditions are set such that the images taken by

the spacecraft pass from fully illuminated to fully eclipsed.

The nominal orbit, presented as the magnitude of the po-

sition and velocity vectors, and asteroid orientation are

presented in Table 3. The pole values are the same as

those used by Hollenberg,13 while the orbit for each as-

teroid is adjusted to have the same 52 hour period, ap-

proximately modeled after the NEAR mission to Eros.38

Table 3. Asteroid Parameters

Asteroid ||r|| [km] ||v|| [km] α [deg] δ [deg] θ0 [deg]

Lutetia 457.56 15.82 0 60 -27

Eros 69.19 2.39 0 60 -27

Toutatis 10.23 0.36 0 60 -27

Bennu 1.60 0.05 0 60 -27

Space Imaging Workshop. Atlanta, GA.

7-9 October 2024

7



Figure 6 depicts one orbital period about each asteroid

in the body-fixed frame. The trajectory about Toutatis

provides the least coverage while the trajectory about

Bennu provides the most. This is due to the relatively

slow and fast spin rates of Toutatis and Bennu, respec-

tively.

For each Monte Carlo run, the prior distribution is sam-

pled to define a true shape, rotation rate and axis, and

relative spacecraft position and velocity states. All states

are modeled as Gaussian except for the shape, modeled

as a GP distribution. The values of the initial standard

deviations are reported in Table 4.

Table 4. Monte Carlo Initial Standard Deviation

Values

Std. Dev. Units Lutetia Eros Toutatis Bennu

σr [km] 6.50 1.00 0.15 0.02

σv [cm/s] 8.82 1.33 0.20 0.03

σα [Deg.] 7.50 7.50 7.50 7.50

σδ [Deg.] 7.50 7.50 7.50 7.50

σθ̇ [Deg./hr] 1.32 2.05 0.08 2.53

σθ0 [Deg.] 0.01 0.01 0.01 0.01

RSS(σf ′) [m] 2,433.1 393.3 59.1 12.3

The initial position standard deviations are approxi-

mately 1.5% of the nominal orbit’s semi-major axis. The

initial velocity standard deviations cover a 5% maneuver

execution error when injecting into circular orbit from a

hyperbolic approach. The deviation on each axis is such

that 99.7% of initial velocity perturbations fall under the

5% maneuver execution error.39 The standard deviations

for the pole elements are the same for each asteroid. The

spin perturbations are 3% of the nominal spin.

Previous work has demonstrated that the prime merid-

ian has difficulty converging to the truth, pointing to

observability issues. As such, the perturbations on the

prime meridian are small to ensure the lack of observ-

ability does not significantly impact the convergence of

the other states. If the prime meridian is unobservable,

the results will indicate no additional convergence to the

truth. This analysis is crucial, as it determines whether

the state should be discarded from future analyses.

Perturbing the shape is a highly sensitive process.

Without the proper correlations, perturbed truth shapes

are likely to be unrealistic to how small bodies naturally

form, including peaks, craters, and negative radii. To pro-

duce proper perturbed shapes, a maximum likelihood GP

batch filter is processed on a hyperbolic approach and

distribution used for sampling.18 However, GP density

produced from the batch filter is quite confident, yielding

uninteresting shape perturbations for the Monte Carlo

studies. Thus, the GP batch filter is used here to obtain

the spatial correlations of the shape covariance, and the

standard deviations inflated to 5% of the nominal radii.

This approach has provided the most consistent initial

covariances desired for Monte Carlo simulations.

(a) Lutetia

(b) Eros

(c) Toutatis

(d) Bennu

Figure 6. Satellite Trajectories in the Body-Fixed

Frame
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The tuning parameters for the GPSF are the same for

each asteroid. The vertical scaling σc is set to 1m, and

the horizontal scale factor l set to one. The camera noise

σρ is set to 0.1 pixels according to standard camera noise

levels.40 The initial data association error is set to match

the initial standard deviation of the pole states, 7.5 de-

grees, with a lower bound of 1 degree. The value for

β0 is set at 0.01, and is found to be appropriate for the

simulations presented.36 The level of rejection cl is set

to 1× 106, which is sufficient for measurement rejection.

The covariance inflation factor P lb is set such that shape

standard deviations do not go below 7.5% of their initial

values, according to

plb = 0.075 (40)

P lb =

[
010×10 010×300

0300×10 p2lbdiag
(
P f (t0)

) ] . (41)

The navigation errors are presented for 500 Monte

Carlo runs. The Monte Carlo navigation errors are used

to calculate an empirical covariance, measuring the per-

formance of the filter. An analytical covariance study, or

Linear Covariance (LinCov) study, is performed by prop-

agating the initial covariance and incorporating measure-

ments along the nominal trajectory.17 It is often desired

to demonstrate that the covariance produced by a Lin-

Cov analysis is approximately equivalent to the covari-

ance produced by a Monte Carlo study. This relationship

has been validated for a variety of scenarios, including

Mars atmospheric entry,41,42 powered lunar descent,43

and cislunar ground-based navigation.44 Furthermore, it

is highly useful to provide the covariance validation as

an analytic solution can be readily utilized within opti-

mization algorithms for maneuver planning45 and naviga-

tion planning.21 However, by artificially underweighting

the measurements and applying covariance inflation, the

GPSF true navigation errors are consistently smaller than

the individual filter covariances. Thus, the LinCov results

are not expected to match the empirical data calculated

from the Monte Carlo simulations.

The inconsistency between the LinCov and Monte

Carlo results is further analyzed by calculating the nor-

malized estimation error squared (NEES) for each simu-

lation

ϵ = (x− x̂)T P̂
−1

(x− x̂), (42)

where x is the true state, x̂ the filter state estimate, and

P̂ the filter covariance. For efficient filters, the NEES

follows a chi-square distribution with an expected value

equal to the number of states. The covariances produced

by LinCov and Monte Carlo studies are expected to match

in scenarios where the filter is efficient and remains within

the region of linearity. Due to the measurement under-

weighting and covariance inflation terms, the GPSF is

not statistically consistent. Thus, the LinCov and Monte

Carlo covariances are not expected to match.

While efficient filters are desired, the GPSF requires

measurement underweighting and covariance inflation to

prevent filter saturation. The tuning parameters are set

to provide a pessimistic filter, as denoted by low NEES

values inconsistent with a chi-square distribution. Fur-

thermore, small body missions may last far longer than a

week,46 as simulated here in the Monte Carlo runs. More

aggressive underweighting techniques may be desired and

acceptable given the available time to estimate the state.

Approaches for autonomously reducing the amount of un-

derweighting for scenarios with longer observation periods

is an area of ongoing research.

The tuning parameters here are selected based on nu-

merous case studies studying state estimate convergence

and filter efficiency. While the GPSF tuning parameters

here are the same about each asteroid, this does not indi-

cate that these values are optimal for all mission scenarios.

Furthermore, these values cannot be treated as optimal

for the GPSF about any of the small bodies. Table 5

presents the approximate range of appropriate values for

the tuning parameters. Measurement noise is excluded,

as it is selected based on sensor specifications. The co-

variance vertical scale σc is also excluded, as it strongly

depends on the asteroid’s shape and how GP regression

errors exhibit.

Table 5. Acceptable GPSF Tuning Parameters

Parameter Range Units

l [.75, 2.5] −
β0 [0.01, 0.20] −
σe [5, 10] Degrees

σelb [.5, 2] Degrees

cl [1× 103, 1× 106] Pixels

plb [0.05, 0.15] -

The lower bounds provided generally ensure GPSF

state convergence with filter pessimism. The upper

bounds are not absolute, as higher values will simply

make the GPSF converge more conservatively. Further

note that exaggerating any one of the tuning parameters

may eliminate the impact and necessity of the other pa-

rameters

Thus the GPSF is tuned and tested in various mission

scenarios with Monte Carlo studies. The results from the

Monte Carlo simulations for Eros are presented, consist-

ing of the navigation errors for the position, velocity, pole,

spin, and shape states. The NEES values for each filter

run are also provided. The Monte Carlo results for Lute-

tia, Toutatis, and Bennu are presented in Appendices B-

D.
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Monte Carlo Results: Eros. Figure 7 depicts the

position navigation errors for 500 Monte Carlo simula-

tions. Along with the individual navigation errors from

the GPSF, the empirical standard deviations are plotted

in red, and the analytical (produced by LinCov) in blue.

The plots are zoomed in to better visualize the navigation

errors near the end of the simulations. Figure 8 depicts

the velocity navigation errors. Note that the analytical

and empirical standard deviations do not match, as dis-

cussed. The analytical covariance tends to be larger than

the empirical covariance, particularly as time progresses.
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Figure 7. Eros Position Navigation Errors

The position and velocity navigation errors demon-

strate the GPSF’s ability to estimate the true position

and velocity of the spacecraft. The final position naviga-

tion errors are less than 5 meters per axis after a week

of measurement data, while the initial errors start at 1

kilometer per axis. The final velocity navigation errors

are less than 0.37 mm/s per axis, while the initial errors

start at 1.33 cm/s. Future work will focus on determining

what level of final errors are necessary for various feasibil-

ity metrics, however the ability of the GPSF to estimate

the position and velocity are clearly demonstrated.
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Figure 8. Eros Velocity Navigation Errors
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Figure 9 depicts the navigation errors for the right

ascension, declination, and spin rate. Consider the sig-

nificant difference between the analytical and empirical

standard deviations. Over a week of measurements, the

right ascension errors decrease from a standard deviation

of 7.5 degrees to 0.02 degrees, the declination from 7.5

degrees to 0.01 degrees, and the spin rate from 2.05 de-

grees per hour to 0.00083 degrees per hour (or from 3% to

0.0012%). The navigation errors for the prime meridian

are not shown as the errors do not improve with measure-

ment incorporation. Thus, it is concluded that the prime

meridian is unobservable under the current silhouette-

based measurement system.
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Figure 9. Eros Spin/Pole Navigation Errors

Figure 10 depicts the shape navigation errors for the

500 Monte Carlo simulations. The estimated radii at the

300 basis nodes are condensed by calculating the Root

Mean Squared (RMS) of the navigation shape errors. The

mean of the RMS shape errors is also calculated and plot-

ted. Note the shape errors quickly converge, then begin to

level off. Recall that the shape elements of the filter’s co-

variance are inflated at each measurement step to ensure

filter pessimism. For longer mission durations, where it is

no longer wise to base the inflation off the initial covari-

ance, the covariance inflation can be changed to ensure

further convergence.
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Figure 10. Eros Navigation Shape Errors

Figure 11 depicts the NEES for each Monte Carlo run.

As designed, there is a clear bias towards filter pessimism

due to the measurement underweighting and covariance

inflation. This filter inefficiency explains why the LinCov

covariance tends to be larger than the covariance calcu-

lated empirically from the Monte Carlo results.
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Figure 12 depicts a heat map of Eros, capturing the

shape estimation errors at the final time. The heat map

is represented as a Delaunay triangulation over the nom-

inal shape of Eros. The nominal shape is consistent with

the mean, as the shape is perturbed normally from the

initial shape covariance. The initial shape errors are 5%.

Therefore, while some regions of Eros have higher shape

errors at the final time, the filter provides an accurate

shape of Eros.

Figure 12. Eros Shape Error Heat Map

The large craters on the top and bottom of Eros have

the largest shape errors. This is unsurprising, as craters

are difficult to estimate with silhouette-based measure-

ments. However, due to the spatial correlations involved

with the GP shape, the craters can be estimated to some

degree. It is clear that the extreme ends of Eros (along

the x-axis) are easier to estimate. Previous work with the

GP batch filter demonstrated that unique geographical

features yield improved shape estimation.18 This pat-

tern holds for Eros’ extremities. Large shape errors are

also noted along the bottom of Eros (along the negative

z-axis). This region unilluminated due to the Sun’s rel-

ative position with respect to Eros. Furthermore, the

concentration of nodes at the center due to the spherical

distribution of the basis set leads to higher errors. The

shape estimation errors are expected to decrease as more

measurements become available.

The results from the Monte Carlo simulations indicate

that the GPSF can estimate the state, with the exception

of the unobservable prime meridian, for various asteroids

(see Appendices B-D). The GPSF is tuned to demonstrate

state convergence over a week of measurement incorpora-

tion, while also emphasizing filter pessimism. For naviga-

tion system design, the GPSF tuning parameters should

be tuned on a regular basis to ensure continual state

estimation improvement. Otherwise, the measurement

underweighting and covariance inflation are expected to

cause extreme filter pessimism and limited estimation im-

provement.

The GPSF about Bennu is particularly sensitive. The

results in Appendix D indicate that while the state esti-

mate converges to the truth, the GPSF is frequently over-

confident despite using the same tuning parameters and

relative initial errors as the other asteroids. Note that a

more pessimistic filter can be obtained by increasing the

measurement underweighting or the covariance inflation.

Estimation about Bennu poses particular difficulties, in-

cluding the extremely tight position and velocity error

tolerances and Bennu’s lack of geographical features. It

is likely that the GPSF about Bennu, and other similar

bodies, will require careful orbit planning to ensure the

filter remains viable.

Conclusions. The process of modeling small bodies

with a GP and the derivation of the GPSF are pro-

vided. The GPSF is demonstrated to estimate the ob-

serving spacecraft’s relative position and velocity, while

simultaneously estimating the central body’s pole, spin,

and shape with silhouette-based measurements. The var-

ious measurement underweighting techniques and the co-

variance inflation scheme are implemented to ensure the

GPSF remains pessimistic by design. A detailed deriva-

tion of the measurement partials is provided, marking

a significant improvement in run-time performance from

numerical techniques. The robustness of the GPSF is ex-

hibited through Monte Carlo studies, where the GPSF is

able to estimate hundreds of perturbed states.

The primary goal of future work is to introduce im-

proved realism in test scenarios. The current state is

to be augmented to include the small body’s mass and

spacecraft attitude offsets. Process noise, solar radiation

pressure, and more sophisticated gravity models are also

to be considered. While the GPSF is desired to oper-

ate solely on silhouette-based measurements, additional

measurement sources are to be considered for inclusion.

Additionally, it will become necessary to study how many

basis nodes are necessary to sufficiently capture the true

shape of a higher fidelity model.

While the GPSF can estimate the truth, further study

is required to determine what level of estimation errors

are necessary for mission operations. Potential feasibil-

ity metrics include pointing accuracy for Earth commu-

nication, pointing accuracy towards the small body for

continuing GPSF applications, and station keeping accu-

racy. These feasibility metrics will highlight areas where

the GPSF needs improvement, and potentially provide

further evidence that the GPSF is viable for autonomous

navigation.
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Appendix A: Analytic Partials. The pinhole cam-

era with data association is a function of state elements

xi, the jth measured radius fj , node ej , and optimization

angle γj :

h
[
xi, e

B
j (xi, γj(xi)), fj(xi, e

B
j (xi, γj(xi)))

]
. (43)

The pinhole camera can be more compactly expressed in

terms of Eq. 7, and the partials expressed as:

dh

dxi
= M

∂ρ

∂s

ds

dxi
, (44)

where

dh

dxi
=

∂h

∂xi
+

∂h

∂e

(
∂e

∂xi
+

∂e

∂γ

dγ

dxi

)
+

∂h

∂f

(
∂f

∂xi
+

∂f

∂e

(
∂e

∂xi
+

∂e

∂γ

dγ

dxi

))
. (45)

The j subscript is dropped for compactness. All nodes,

whether basis or measured, are in the body fixed frame

unless otherwise noted.

Some partials within the chain rule are required for

each state partial. The partials of s with respect to the

input radius f and node e are

∂s
∂f = T I

CTA
I e, (46)

∂s
∂e = T I

CTA
I f. (47)

The partial of the measured radius f with respect to the

input node e is solved according to the GP regression

equation in Eq. 2

∂f
∂e =

∂C(e,E′)
∂e C−1(E′,E′)f ′, (48)

Xnn =
C(e,E′

n)

l2
√

1−(κeTE′
n)

2
, (49)

∂f
∂e =

(
E′XC−1(E′,E′)f ′)T , (50)

where the subscript n denotes the nth node of the basis

set. Note that if κ = 1, Eq. 49 has a singularity when

eTE′
n = 1, corresponding to the kernel function in Eq. 3.

The partial of the measured node e with respect to the

optimization angle γ is

∂e
∂γ = T I

AΓζ

[
iζ×

]
ir. (51)

The partials of s with respect to each state element are

expressed as:

∂s
∂r = −T I

C , (52)

∂s
∂v = 0, (53)

∂s
∂α = T I

C
∂TA

I
∂α fe, (54)

∂s
∂δ = T I

C
∂TA

I
∂δ fe, (55)

∂s
∂θ̇

= T I
C

∂TA
I

∂θ̇
fe, (56)

∂s
∂θ0

= T I
C

∂TA
I

∂θ0
fe, (57)

∂s
∂f ′ = 0, (58)

where the partials of TA
I with respect to the pole elements

follow simply from differentiation of the sine and cosine

terms. Likewise, the partials of ∂e
∂xi

with respect to the

pole states are simply

∂e
∂α =

∂T I
A

∂α Γζir, (59)

∂e
∂δ =

∂T I
A

∂δ Γζir, (60)

∂e
∂θ̇

=
∂T I

A

∂θ̇
Γζir, (61)

∂e
∂θ0

=
∂T I

A
∂θ0

Γζir. (62)

The partials ∂e
∂v and ∂e

∂f ′ are zero. The partial of e with

respect to r is much more involved, as the rotation matrix

Γζ is dependent on r. The partial ∂e
∂r is expressed as

∂e

∂r
= T I

A
∂eI

∂r
, (63)

where

∂eI

∂r
=

1

r
Γζ

[
I − irir

T
]
+

[
∂Γζ

∂r1
ir,

∂Γζ

∂r2
ir,

∂Γζ

∂r3
ir

]
. (64)

The partials of the rotation matrix Γζ with respect to

each element of the position vector are

∂Γζ

∂ri
= sin(γ)

∂
[
iζ×

]
∂ri

+ (1− cos(γ))

(
∂
[
iζ×

]
∂ri

[
iζ×

]
+
[
iζ×

] ∂ [iζ×]
∂ri

)
,

(65)

where

∂[iζ×]
∂ri

=
[
∂iζ
∂ri

]
×, (66)

∂iζ
∂ri

=
(
− 1

ζ

(
I − iζiζ

T
)
[ia×]

)
:,i

. (67)

The partial ∂f
∂xi

is zero for all states except for the shape

∂f

∂f ′ = C(E,E′)C−1(E′,E′). (68)

Root-Solved Partials

There is no explicit term for γ, as it is obtained through

optimizing the objective function in the data association

routine. Instead, dγ
dxi

is found through the partials of a

root solved process:

dγ

dxi
= −

(
dq

dγ

)−1
dq

dxi
, (69)

where the expression q is defined by the first order neces-

sary conditions of the objective function:

∂J
∂γ =

(r−f cos(γ)
[
∂f
∂γ r sin(γ)+fr cos(γ)−f2

]
√

f2+r2−2fr cos(γ)
3 , (70)

q = ∂f
∂γ r sin(γ) + fr cos(γ)− f2. (71)
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Note that in order for the first order necessary condition

to be satisfied, the numerator must equal zero. Further-

more, the term r − f cos(γ) in every mission design sce-

nario will be nonzero, as the orbit is greater than the

asteroid’s radius.

The partials needed for q with respect to γ are decom-

posed with the chain rule:

dq

dγ
=

∂q

∂γ
+

∂q

∂f

∂f

∂e

∂e

∂γ
+

∂q

∂fγ

dfγ
dγ

, (72)

where

fγ =
∂f

∂e

∂e

∂γ
. (73)

The partials required for all state elements are

∂q
∂γ = fγr cos(γ)− fr sin(γ), (74)

∂q
∂f = r cos(γ)− 2f, (75)

∂q
∂fγ

= r sin(γ). (76)

Solving for
dfγ
dγ requires additional chain rule imple-

mentation, but for compactness is expressed as

dfγ
dγ

=
∂e

∂γ

T ∂2f

∂e2
∂e

∂γ
+

∂f

∂e

∂2e

∂γ2
, (77)

where

∂2e
∂γ2 = T I

AΓζ

[
iζ×

]2
ir, (78)

Ynn = 1
l2

[
1
l2

C(e,E′
n)

1−(κeTE′
n)

2 +
C(e,E′

n)(κe
TE′

n)√
1−(κeTE′

n)
2
3

]
, (79)

∂2f
∂e2 = E′diag

[
YC−1(E′,E′)f ′]E′T . (80)

Note again that singularity issues arise when κ = 1 for

Eq. 79.

The partials of q with respect to the state elements are

decomposed with the chain rule according to

dq

dxi
=

∂q

∂xi
+

∂q

∂f

[
∂f

∂e

∂e

∂xi
+

∂f

∂xi

]
+

∂q

∂fγ

dfγ
dxi

. (81)

Fortunately, ∂q
∂xi

is zero for all state elements except po-

sition

∂q

∂r
= ir

T (fγ sin(γ) + f cos(γ)). (82)

Lastly, solving for
dfγ
dxi

, which again requires a chain rule,

but is simplified as

dfγ
dxi

=
∂e

∂γ

T
[
∂2f

∂e2
∂e

∂xi
+

∂2f

∂xi∂e

]
+

∂f

∂e

∂2e

∂xi∂γ
. (83)

The new second derivative term ∂2f
∂xi∂e

is easily solved

with respect to the shape using Eq. 50, and is zero for all

other state elements.

The second derivative ∂2e
∂xi∂γ

with respect to the pole

elements only depends on the rotation matrix and are

solved easily for using Eq. 51. The partials with respect

to position ∂e
∂γ∂ri

are again not trivial, but are solved with

the product rule using terms already derived

∂e

∂γ∂ri
= T I

A

[
∂Γζ

∂ri

[
iζ×

]
ir + Γζ

∂
[
iζ×

]
∂ri

ir+

Γζ

[
iζ×

] ∂ir
∂ri

]
. (84)

All intermediate partial required are verified against a

complex step derivative.30 Furthermore, the complete

partials are checked against a multi-step numerical mea-

surement partial, which include the data association step.
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Appendix B: Monte Carlo Results: Lutetia.

Figure 13 depicts the position navigation errors for 500

Monte Carlo simulations about Lutetia. The plots are

again zoomed in to better visualize the navigation errors

near the end of the simulations. Figure 14 depicts the ve-

locity navigation errors. The analytical covariance tends

to be larger than the empirical covariance, particularly as

time progresses.
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Figure 13. Lutetia Position Navigation Errors

The position and velocity navigation errors demon-

strate notable skewness initially, pointing to initial

position and velocity errors potentially beyond the region

of linearization. The position estimation errors decrease

from 6.5 kilometers per axis to less than 33 meters per

axis, while the velocity errors decrease from 8.82 cm/s

per axis to 0.61 mm/s per axis.
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Figure 14. Lutetia Velocity Navigation Errors
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Figure 15 depicts the navigation errors for the right as-

cension, declination, and spin rate. A few cases notably

lie outsize the empirical 3σ bounds for the right ascension,

but still converge to the truth. Over a week of measure-

ments, the pole errors decrease from a standard deviation

of 7.5 degrees to less than 0.02 degrees. The spin rate

decreases from 1.32 degrees per hour to 0.001 degrees per

hour (or from 3% to 0.0023%).
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Figure 15. Lutetia Spin/Pole Navigation Errors

Figure 16 depicts the shape navigation errors for the

500 Monte Carlo simulations. While the shape errors

quickly converge, as they did for Eros, the rate of con-

vergence is less dramatic initially. Recall Lutetia spins

more slowly than Eros, and has fewer distinctive shape

features.
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Figure 16. Lutetia Navigation Shape Errors

Figure 17 depicts the NEES for each Monte Carlo run.

As designed, there is a clear bias towards filter pessimism

due to the measurement underweighting and covariance

inflation. Notably, some runs are over-confident with

their estimation near the beginning of the simulation.

These cases are the same as those with outlying right

ascension estimation, demonstrating that filter overcon-

fidence can lead to poorer state estimation. All cases

eventually achieve the desired pessimism.
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Figure 17. Lutetia NEES Values
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Figure 18 depicts the heat map of Lutetia, capturing

the shape errors at the final time. As with Eros, craters

experience a higher level of estimation errors, but still im-

prove from the original 5% errors. The largest errors are

on the bottom (negative z-axis direction), which combines

poor illumination and crater geometry. The concentra-

tion of nodes due to the spherical distribution does not

cause higher regions of error for Lutetia. Thus while the

spherical distribution of nodes may be poorly suited for

elongated bodies like Eros, they are well suited for bodies

like Lutetia that are near-spherical.

Figure 18. Lutetia Shape Error Heat Map

Appendix C: Monte Carlo Results: Toutatis.

Figure 19 depicts the position navigation errors for 500

Monte Carlo simulations about Toutatis. The plots are

again zoomed in to better visualize the navigation errors

near the end of the simulations. Figure 20 depicts the

velocity navigation errors. The analytical covariance and

empirical covariances here are similar over time, but re-

main inconsistent with each other due to the filter pes-

simism.
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Figure 19. Toutatis Position Navigation Errors
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The position and velocity navigation errors demon-

strate the GPSF’s ability to estimate the truth about

smaller bodies. The position estimation errors decrease

from 150 meters per axis to less than 1.5 meters per axis,

while the velocity errors decrease from 2.00 mm/s per axis

to 0.05 mm/s per axis. The results about Toutatis demon-

strate that smaller estimation errors in position and veloc-

ity are attainable by the filter. Thus, similar estimation

performance can be obtained about larger bodies such as

Lutetia and Eros.
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Figure 20. Toutatis Velocity Navigation Errors

Figure 21 depicts the navigation errors for the right as-

cension, declination, and spin rate. A few cases notably

lie outsize the empirical 3σ bounds for the right ascension,

but still converge to the truth. Over a week of measure-

ments, the pole errors decrease from a standard deviation

of 7.5 degrees to less than 0.8 degrees. The spin rate de-

creases from 0.08 degrees per hour to 0.001 degrees per

hour (or from 3% to 0.0375%). The pole and spin esti-

mation performance is far worse for Toutatis compared to

the estimation errors about Lutetia and Eros.
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Figure 21. Toutatis Spin/Pole Navigation Errors
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Figure 22 depicts the shape navigation errors for the

500 Monte Carlo simulations. While shape estimation is

clearly demonstrated, the rate and level of convergence

is significantly worse for Toutatis than for Lutetia and

Eros. The slow spin of Toutatis leads to worse estimation

performance, as the spacecraft observes less of the shape.
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Figure 22. Toutatis Navigation Shape Errors

Figure 23 depicts the NEES for each Monte Carlo run.

As designed, there is a clear bias towards filter pessimism

due to the measurement underweighting and covariance

inflation.
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Figure 23. Toutatis NEES Values

Figure 24 depicts the heat map of Toutatis, capturing

the shape errors at the final time. Consistent with the

shape estimation performance depicted in Fig. 22, there

are far more regions on Toutatis that are poorly esti-

mated. Like Eros, the extreme ends of Toutatis (along

the z-axis) experience the best estimation, while regions

near the center have higher errors. The negative impact

of spherically distributed basis nodes is particularly ev-

ident with Toutatis. Densely packed nodes yield more

unobservable craters when perturbed, leading to higher

estimation errors.

Figure 24. Toutatis Shape Error Heat Map

The slow spin of Toutatis is a driving factor of estima-

tion performance. A week of silhouette-based measure-

ments is likely insufficient for mission scenarios, as the

majority of Toutatis remains unobserved. However, the

shape estimation errors improve across the entire body,

demonstrated by the heat map. Thus, the GPSF is able to

estimate the entire shape, but would benefit from longer

simulations to observe more of Toutatis.

Space Imaging Workshop. Atlanta, GA.

7-9 October 2024

21



Appendix D: Monte Carlo Results: Bennu. Fig-

ure 25 depicts the position navigation errors for 500

Monte Carlo simulations about Bennu. The plots are

again zoomed in to better visualize the navigation errors

near the end of the simulations. Figure 26 depicts the ve-

locity navigation errors. The analytical covariance tends

to be larger than the empirical covariance, particularly as

time progresses.
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Figure 25. Bennu Position Navigation Errors

The position and velocity navigation errors demon-

strate notable skewness initially, pointing to initial po-

sition and velocity errors potentially beyond the region

of linearization. The position estimation errors decrease

from 20 meters per axis to less than 0.01 meters per axis,

while the velocity errors decrease from 0.3 mm/s per axis

to 0.004 mm/s per axis. As Toutatis, the results indicate

the GPSF can obtain extreme precision.
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Figure 26. Bennu Velocity Navigation Errors
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Figure 27 depicts the navigation errors for the right

ascension, declination, and spin rate. Over a week of

measurements, the pole errors decrease from a standard

deviation of 7.5 degrees to less than 0.8 degrees. The spin

rate decreases from 2.53 degrees per hour to 0.002 degrees

per hour (or from 3% to 0.0024%).
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Figure 27. Bennu Spin/Pole Navigation Errors

Figure 28 depicts the shape navigation errors for the

500 Monte Carlo simulations. The shape errors converge

rapidly and achieve the best estimation performance out

of all the asteroid simulations.
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Figure 28. Bennu Navigation Shape Errors

Figure 29 depicts the NEES for each Monte Carlo run.

As designed, there is a clear bias towards filter pessimism

due to the measurement underweighting and covariance

inflation. However, there are a large number of cases

that experience filter over-confidence initially. Efforts to

reduce the filter over-confidence demonstrated that the

GPSF may be ill-suited for this particular simulation. Es-

timation about Bennu is particularly difficult due to it’s

low mass, corresponding small orbit, and near-spherical

shape.
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Figure 29. Bennu NEES Values
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Figure 30 depicts the heat map of Bennu, capturing

the shape errors at the final time. The GPSF is able to

estimate the entirety of Bennu, as there are no craters

or unobservable regions. Note that across the shape, the

largest estimation errors are approximately 1.7%. Due to

Bennu’s shape and spin, the GPSF is able to achieve a

greater level of estimation than the other asteroids.

Figure 30. Bennu Shape Error Heat Map
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