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Abstract. Artemis I was launched on November
16th, 2022 and the Space Launch System successfully
placed the Orion spacecraft on a trans-lunar trajec-
tory. Orion subsequently performed a lunar flyby, en-
tered a distant retrograde orbit, performed another lu-
nar flyby, and then successfully returned home with a
Pacific splashdown on December 11th. During these fly-
bys, Orion’s optical navigation camera collected imagery
of the lunar surface, and this paper conducts a qualita-
tive performance analysis of a NASA-developed crater
detector on a subset of the collected images.

Background. The abundance and distribution of
impact craters throughout the lunar surface enable the
development of crater-based terrain relative navigation
solutions. These craters are observable targets from a
wide range of altitudes as a function of an observing
camera’s resolution. However, the primary challenge in
using craters for TRN lies in the variation in how they
appear in imagery, where their shape, size, surrounding
terrain are all affected by the local lighting conditions
while also being subject to the observer’s altitude and
attitude relative to the craters, and the camera model
and exposure. Because of these data variations in how
craters can be captured in images, previous works have
provided different approaches on how to build a crater
detector suitable for TRN.1, 2

A robust crater detection capability would enable
TRN in various flight phases, from high altitudes that
may include highly eccentric, off-nadir images of craters,
to lower altitudes that may focus on nearly circular
craters for hazard avoidance. To handle the expected
variations in what craters can look like, this paper fur-
ther develops a neural network model that can be iter-
atively trained with thousands of crater image samples.
The goal of this work is to process imagery taken dur-
ing the Artemis I flight, using the OpNav camera. With
the variations in crater shapes, sizes, projections, and
lighting conditions, the detector model is able to better
handle the real imagery after improvements were made
to the neural network training pipeline through the use
of simulated images.

This paper describes enhancements to the crater de-
tector described in Ref. 3, primarily consisting on the
addition of new training data produced by a ray-traced
lunar scene generator. Then, performance of the en-
hanced detector is qualitatively evaluated on data col-
lected by Orion’s OpNav camera during its flybys during
Artemis I.

Previous Work Summary. One of the most challeng-
ing tasks for neural network-based image processing is

Figure 1. Example detected image with bound-
ing boxes (left) and Mask R-CNN’s binary mask
(right) for an LROC image.

to obtain or develop a labeled dataset that contains the
images and the associated “true” labels. This labeled
dataset is what the neural network iterates on and al-
lows the current model to check itself against the truth,
updating the internal weights and biases of the network
to more accurately detect the desired objects. Previ-
ous work3focused on the development of an automated
labeling pipeline that overlays the Robbins crater cat-
alog4 to the LROC Global Morphologic Maps.5 The
previous development effort focused on enabling a user
to set configurations for what kinds of craters are in-
cluded in the labeled dataset through catalog param-
eters like min/max crater diameter and eccentricity.
Through testing, the detection performance significantly
improved by computing metrics like Shannon entropy
and area in shadow for the crater samples which led to
the inclusion of additional parameters that the user can
control. By enabling a parametric capability to prepro-
cess the dataset to include “good” craters, the resulting
labels used to train the detector can be easily adjusted
by a user in an automated manner.

After generating the labeled dataset, a general image
detection method can be trained to learn what a “crater”
is and how they can appear in images. This work relies
on the Mask Region-based Convolutional Neural Net-
work (Mask R-CNN),6 which provides a set of detection
outputs: a bounding box containing the rectangular re-
gion where a crater is located and a binary mask con-
taining the “crater” or “not crater” label for each pixel
(an example of which is given in Fig. 1).

An advantage of Mask R-CNN is its ability to de-
tect multiple objects of the same type in an image so
an image containing multiple craters can be processed.
Following iterative training cycles, the resulting detec-
tor model was then evaluated for centroiding accuracy
and tested for a variety of synthetic and real flight im-
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Figure 2. Apollo 16 crater detection samples
(produced by the previous 2020 model in Ref. 3).

agery (such as the Apollo 16 images depicted in Fig-
ure 2). The crater detctor was subsequently utilized to
assess filter performance in an extended Kalman filter
(EKF) paired with a crater identification algorithm,3 an
identification-free anonymous feature processing (AFP)
navigation problem,7 and further integrated estimation
tests.8, 9 This document serves as a sequel to Ref. 3 to
demonstrate model improvements that have been made
recently.

Updates to Crater Detector. If the input dataset
used for training contains all of the expected image vari-
ations that the model is expected to handle, the de-
veloped detector can provide high confidence detections
when given an image it has never seen before. To ro-
bustly handle the variations in data that is expected
of real mission imagery, the detector must be trained to
handle these different conditions. The previous work re-
lied on image crops of the LROC maps and the Robbins
catalog was projected onto the flat images to generate
the automated labels. This process did not account for
the approximately spherical projection of the image and
the catalog onto the Moon and assumed that the camera
would always be nadir pointing to the surface. While the
previous work focused on near-equatorial regions of the
Moon, where the inaccurate projections were assumed to
minimally cause problems for the following filter tests,
they instead resulted in issues resulting in filter bias and
poor identification performance.8, 9

Limitations in image generation capabilities and is-
sues with correctly handling the map projections re-
sulted in focusing on handling these errors in post-
processing. However, a better approach is to use an
accurate image rendering tool, supplemented with the

correct projection of the Robbins catalog, with a con-
figurable camera model that allows a user to set the
position and attitude of the observer. With the use
of a Blender-based image rendering tool for lunar im-
agery (soon to be released for open-source use, hopefully
early 2025), the Robbins crater catalog is projected onto
the spherical Moon surface, and the automated labeling
pipeline is continued from previous work. The updated,
automated label generation pipeline is preserved to gen-
erate large image batches for training, again continuing
the use of user-based parametric control for crater sizes,
eccentricity, shadow, and entropy.

The Blender-based image generation pipeline com-
prises of the key update to the Mask-R CNN detec-
tor, and it massively improved the crater detector’s per-
formance via the ability to generate off-nadir imagery
at varying lighting conditions. Examples of the images
used to train the network can be seen for varied cam-
era poses in Fig. 3 and for varied lighting conditions in
Fig. 4. So, images were generated at varied poses, la-
beled/annotated utilizing the aforementioned automa-
tion tool, and the labeled results were paired with the
images to improve the network training.

Instead of training a new model entirely from scratch
to focus only on the Blender-based images, the updated
model builds from the previous 2020 model through Py-
Torch’s interface to Mask R-CNN. PyTorch tools en-
able further training from an existing model such that
the detector is updated to include the Blender dataset
while retaining the weights and biases computed from
the LROC images. Through the use of this interface,
the detector development pipeline is configured to train
with any input dataset to support including other data-
sources in the future, from simulated imagery using
Blender, Unreal Engine, or other rending tools, images
from derived output products from LRO, or real imagery
from future lunar missions. This input-independent
property of neural network-based tools is another ben-
eficial element that can enable the generalized develop-
ment of a crater detection model.

Performance Results. The performance of the de-
tector models on the Artemis I OpNav images were used
as the primary comparison benchmark, since the models
were not trained on these images at all. Craters can be
seen in the Artemis I images from Flight Day 06 and
Flight Day 20, which correspond to the approximately
closest approaches of the Orion spacecraft to the lunar
surface, however, the performance of the detector mod-
els depend on how well their respective input data cap-
tures the crater variations seen in these image sets. For
clarity, the detector model trained only with the LROC
images will be referred to as the “2020 model” while the
model trained with LROC and the Blender images will
be called the “2024 model.” Note that the Mask R-CNN
framework outputs a confidence metric which is between
zero and one, with increasing confidence reflecting the
network’s internal belief in a positive classification. It is

Space Imaging Workshop. Atlanta, GA.

7-9 October 2024

2



Figure 3. Sample images of varying pose within
the Blender-based image pipeline used to update
the crater detector.

Figure 4. Sample images of varying lighting con-
ditions within the Blender-based image pipeline
used to update the crater detector.
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logical, and useful, to truncate detections below a given
threshold before providing them to a navigation filter.

Flight Day 20. Images from Flight Day 20 were ex-
posed well such that the bright and dark regions of the
lunar surface are captured. The detection results for
these images, comparing the 2020 and 2024 model, can
be seen in the following figures:

• Figure 5: detection rate versus confidence.
• Figure 6: detection rate versus image index.
• Figure 7: sample image for all detections with a

confidence exceeding 0.0.
• Figure 8: sample image for all detections with a

confidence exceeding 0.5.
• Figure 9: sample image for all detections with a

confidence exceeding 0.8.

The detection count versus network confidence can be
seen in Fig. 5. Note that, as is obvious, both trends for
the 2020 and 2024 model (in this figure called “Batch
3+4 model”) monotonically decrease. While at first it
seems that the 2020 model is outperforming the 2024
model due to having a higher detection rate, it will
be demonstrated in later results that the higher detec-
tion rate of the 2020 model is due to false detections
rather than reliable crater detections. Additionally, note
that the 2020 model’s loss of detection rate is approx-
imately linear across the confidence level, whereas the
2024 model exhibits a “shelf” when confidence exceeds
0.4. Our findings reflect that the improved training has
drastically improved detection reliability, and the over-
all detection performance is very consistent on these im-
ages.

Figure 6 provides the detection count against image
index for these images, and this makes the performance
contrasts even more stark. Note that the 2020 model
fails to detect anything in the first 60 or so images, but
then quickly ramps up in detection rate. As later images
will demonstrate, this is actually due to the presence of
many false detection and multiple detections (i.e., as-
signing multiple detections to different regions of the
same crater).

Figures 7, 8, and 9 depict comparison frames for 0.0,
0.5, and 0.8 confidence level thresholds, respectively. In
each of these figures, identical images are compared,
with the 2020 model on the left and the 2024 model on
the right. The performance enhancements afforded via
the improvements described previously are immediately
apparent, with the 2024 model virtually eliminating the
false/multiple detection artefacts exhibited by the 2020
model, even at very low confidence thresholds. Note
that in previous work, an assessment of the relationship
between confidence and centroiding accuracy was per-
formed to show that with craters with high confidence
had lower centroiding errors. For navigation filters re-
lying on the centroids only, using the high confidence
craters reduces the measurement error associated with

Figure 5. Flight Day 20 detection count ver-
sus confidence for the 2020 model and the 2024
model (here called “Batch 3+4 model”).

Figure 6. Flight Day 20 detection count versus
image index for the 2020 model and the 2024
model (here called “Batch 3+4 model”).

the centroid accuracy which would also reduce the re-
sulting state error. As such, the consistent detection
performance of the 2024 model suggests it is providing
very valuable centroids for navigation processing.

Flight Day 6. Unfortunately, the outbound flyby im-
ages collected on Flight Day 6 were overexposed. As
described in Ref. 10, the camera settings were adjusted
mid-flight to provide the excellent image qualities ob-
tained on Flight Day 20. However, these overexposed
images were an interesting stressing case for the 2024
detector model. The compared detection results for a
select frame are given in Figs. 10, 11, and 12 for confi-
dence thresholds of 0.0, 0.5, and 0.8, respectively. This
is a significantly more challenging set of images to eval-
uate the detector models with because of the (lack of)
contrast between the crater rims, shadows, and the local
terrain. Since the LROC images did not include samples
that look like these images, the 2020 model did not pro-
duce high confidence detections. However, because the
Blender images contained samples with different light-
ing conditions, the 2024 model is able to detect craters
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with sufficiently high confidence. Given more samples
with difficult lighting that emulate poor exposure, addi-
tional training can further improve the performance of
the detector model for these kinds of surface images.

Discussion and Future Work. It is apparent from
the analysis performed on the Artemis I images col-
lected by Orion’s OpNav camera that the updated de-
tector model exhibits drastically improved performance
despite all the complications induced by real flight im-
agery. These results suggest that the detector’s output
on these flight images provide consistent and desirable
centroiding performance that is suitable for navigation
operations. In fact, this is demonstrated in Ref. 11,
wherein the Flight Day 20 images are utilized to stimu-
late a navigation filter.

In both image sets, the OpNav camera included hor-
izontal stripes throughout the image that is likely a re-
sult of the thermal conditions of the camera. Neither
the LROC nor Blender images included these kinds of
image artifacts, however, the resulting models entirely
disregard these issues and are able to provide detections
because of their robust handling for image variations.
The detector models expect that the images they are
evaluated with are not perfect, however, if the input
datasets used to train the models include these image
artifacts, it is expected that the detector performance
can even more robust. As can be expected for network-
driven detectors of this kind, additional training data,
if responsibly curated, can be expected to only further
improve detection performance.

Additionally, the Blender-based image generation
pipeline is altitude-constrained (as is any lunar scene
generator), meaning the additional network training de-
scribed in this paper captures high-altitude crater data.
To further improve this network, high-resolution, low al-
titude imagery will be needed, and this well depend on
inclusion of local high-resolution DEMs as they are/as
they become available. Fortunately for the evaluation
of the Artemis I OpNav imagery, their relative altitudes
were sufficiently high to provide promising performance.

The current detector development effort focuses on
a generalized capability to detect craters throughout
the lunar surface, however the software can be used to
generate custom detectors that cater to specific cam-
era models or trajectories. Instead of a general detec-
tor, a mission-specific model can limit the set of what
craters it expects to observe, however, it would be the
user’s task to include the expected variations in light-
ing conditions, camera pose, and exposure in the train-
ing dataset. By generating a custom detector model,
the performance may be improved since there would be
fewer crater shapes and sizes that the model would need
to include in its internal weights and biases.

Further, some crater-based navigation tactics that
have been appearing in literature intend to exploit not
just the crater centers but the shape of the crater them-
selves. Most commonly, this employs elliptical approx-

imations to the craters in an image to utilize that as a
valuable navigation resource. Since the present detector
provides an output mask, it is straightforward to provide
ellipse approximations for each crater detector. This is
currently considered forward work, but it seems worth
mentioning as it is a current, though unused, capability
of the detector we have described here.

Additional efforts in deploying these detection models
in flight software-like environments are required for fu-
ture use. The current models used GPU-enabled train-
ing with CPU-based evaluation on desktop-grade hard-
ware, and while neural networks are often deployed to
smaller computing devices, the computational load of
this Mask R-CNN model may require efforts toward
model optimization to reduce runtime. The authors
would like to warn those considering adopting neural-
network-based detectors like this away from utilizing
the training toolbox’s evaluation routines (such as those
shipped with PyTorch) in CPU-limited environments.
Experience has indicated that these routines induce a
tremendous amount of overhead for user-friendliness and
input sanitation that is, generally, unnecessary in an on-
board context. If one simply employs these, they may
deem evaluating the network more CPU intensive than
actually required by a hand-built evaluation routine.
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2020 Model 2024 Model

Figure 7. Flight Day 20 detection results, displaying all craters with confidence greater than 0.0 –
(left) 2020 model, (right) 2024 model.
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2020 Model 2024 Model

Figure 8. Flight Day 20 detection results, displaying all craters with confidence greater than 0.5 –
(left) 2020 model, (right) 2024 model.
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2020 Model 2024 Model

Figure 9. Flight Day 20 detection results, displaying all craters with confidence greater than 0.8 –
(left) 2020 model, (right) 2024 model.

2020 Model 2024 Model

Figure 10. Flight Day 6 detection results, displaying all craters with confidence greater than 0.0 –
(left) 2020 model, (right) 2024 model.
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2020 Model 2024 Model

Figure 11. Flight Day 6 detection results, displaying all craters with confidence greater than 0.5 –
(left) 2020 model, (right) 2024 model.

2020 Model 2024 Model

Figure 12. Flight Day 6 detection results, displaying all craters with confidence greater than 0.8 –
(left) 2020 model, (right) 2024 model.
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