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Abstract. Angles-only navigation has a broad util-
ity within spaceflight due to the low cost and high re-
liability of cameras. These cameras provide imagery
to targets of interest (such as a planet, surface fea-
tures/craters, another spacecraft, etc.) so that a naviga-
tion system can estimate the camera’s state with respect
to that target. However, the image processing needed to
produce the necessary bearing angles often induces non-
Gaussian estimation errors. This work discusses the use
of two newly developed filters that efficiently provide (ap-
proximately) Bayes’ rule optimal conditional mean and
covariance estimates using measurements corrupted by
uniform or heavy-tailed (Cauchy) noise.

Background. Due to their low size, weight, and
power requirements and relatively low financial cost,
cameras have stood out as attractive navigation sensors
for a long time. As such, cameras have received sig-
nificant attention for use in (i) terrain relative naviga-
tion, (ii) rendezvous, proximity operations, and docking
(RPOD), and (iii) ground-based satellite tracking, just
to name a few. These cameras have different driving
technologies and formats, such as the difference between
optical, thermal, and event cameras, but (in the context
of the present discussion) their navigation product is
the same: bearing angles to reference points. Since an
image is two-dimensional, it is the task of navigation
to resolve the indirect relationship between these bear-
ing angles and the three-dimensional space to which the
camera, and the imaged feature(s), belong. When only
these bearing angles (and, typically, an inertial measure-
ment unit) are available, this is referred to as “angles-
only navigation”, named so to remind one that there is
an inherent ambiguity along the range direction of each
observation (the camera boresight).

Remark 1 There are techniques that attempt to match
the feature of interest to some a priori known
model, driven by techniques such as normalized cross-
correlation/template matching or machine learning.
The present discussion restricts focus to methods that
utilize bearing angles in the image plane for navigation.

Navigation algorithms that can directly process the
images collected by a camera are exceedingly uncom-
mon, mostly due to the sheer amount of data contained
by even a single image. A relatively modest 2,000-by-
1,000 pixel image itself contains 2,000,000 pixels! That
is a lot of information for an estimation scheme to try
to ingest directly. As such, the image must be subjected
to pre-processing that converts the content of the im-
age to a collection of reference bearings for use within
a navigation algorithm. Note that the nature of this

pre-processing varies widely by application. For star
field imagery, it is common to binarize the image to
compute connected components of each distinct, desired
feature in the image. For crater-based navigation, spe-
cialized crater-finding algorithms are deployed to search
for unique craters in the image. Things such as stars
tend to have a structure within an image which is that
of a blooming circle, meaning that its structure is gen-
erally well-approximated as a Gaussian. Other things,
such as artificial space objects like satellites or natural
surface features like craters, often contain structure that
induces non-Gaussian measurement errors.

Non-Gaussian measurement errors have long been
known to degrade traditional estimation techniques
based upon the Kalman filter (KF). For a linear sys-
tem, when all state and noise densities are Gaussian,
the Kalman filter exactly represents the true posterior,
whereas when any state or noise density is non-Gaussian
it can only be claimed that the first two central moments
are well-represented. Of course, in the real-world, it is
difficult to make any concrete claims about Gaussianity
in the underlying system noises, but it suffices to say
that the presence of any non-Gaussian effects degrade
the KF’s estimation performance. Additionally, non-
Gaussian measurement noises are well-known to cause
algorithmic stability issues, thus supporting the ubiq-
uity of residual editing in KF applications.1

Methodology. This work seeks to address some of
the challenges in camera-based navigation induced by
non-Gaussian noise by using two newly-developed filters
for non-Gaussian noise:

1. measurements corrupted with uniform noise2

2. measurements corrupted with heavy-tailed noise
(in particular, Cauchy)3

Both of these filters have been demonstrated to produce
approximately Bayes’ rule optimal estimation perfor-
mance with similar runtimes as the KF, whereas exist-
ing techniques based upon particle filtering4 or Gaussian
sums5 provide similarly optimal performance but (usu-
ally) at a dramatically increased runtime cost. Further-
more, the new filters (derived as approximations of the
conditional mean and covariance of the true Bayesian
posterior) are structurally identical to the KF in that
they are “mean and covariance in, mean and covariance
out.” In this sense, they are attractive plug-and-play
options to test in existing KF-based systems.

The Gaussian, uniform, and Cauchy distributions are
widely known, but an example of the difference in their
pdf structure is given in Fig. 1 for discussion. This figure
depicts the three densities which have been “matched,”
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where we depict Cauchy (γ = 1), Gaussian (σ = 1.3898γ

via least-squares fit to the Cauchy), and uniform (on
[−a, a] where a =

√
12σ/2 via variance match to the

Gaussian) distributions. Note that, while being statis-
tically matched, the structure of these pdfs are wildly
different and, thus, their frequency content is similarly
different. This frequency content provides the behavior
of the noise signature, so all three of these densities pro-
vide very different noise signatures. Of course, this is all
obvious, but the point is made for emphasis: simply in-
specting these three pdfs, with the Cauchy in particular,
allows one to see the challenges that can be induced with
non-Gaussian noise if a Gaussian is assumed. We see
that the Cauchy is a particularly attractive noise model
for common real-world systems corrupted with heavy-
tailed measurement noise due to is extremely heavy tails.

Figure 1. Illustrative example of zero-mean pdfs
that have been statistically “matched.”

Proposed Approach. This work assesses the per-
formance enhancements offered by the new filters over
traditional KF methods for angles-only navigation.
These methods apply to any camera-based scenario,
but here we consider a representative RPOD example,
wherein a chaser spacecraft seeks to estimate its state
with respect to a target vehicle. The relative range be-
tween the two vehicles is such that the target vehicle
is sufficiently large so as to produce an imaged profile
that results in non-Gaussian noise in the bearing angles.
In addition, this work considers a particularly challeng-
ing case that supposes the image pre-processing pro-
duces two bearing angles for the single target of interest
(such as providing one bearing to the central body of
the spacecraft and a second bearing to a solar panel).

The numerical performance of the KF and the new
filters are compared in Monte Carlo studies to deter-
mine the performance differences between the two. Dis-
cussion is presented regarding relevant advantages and
drawbacks of one approach versus another. Conclusions
are provided to assess forward work.
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