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Abstract. Vision-based framing sensors are 

well-established in the space community as a critical 

component of guidance, navigation and control systems 

for autonomous spacecraft control and landing. Event-

based sensors detect changes in pixel intensity levels, so 

output an asynchronous stream of pixel events. Their 

unique properties have some advantages for space 

mission scenarios and navigation applications. To 

support developments in this area, we describe how an 

established real-time frame-based sensor simulator 

(PANGU) is being extended to simulate event-based data 

from logarithmic sensors for a variety of space 

applications, and how the simulated data can be 

evaluated with respect to standard event-based 

calibration tools. 

 

Introduction. Vision-based sensors have been 

successfully used as a key component of Guidance, 

Navigation and Control (GNC) systems onboard 

spacecraft for a wide variety of autonomous missions and 

maneuvers such as soft landings on Moons or asteroids, 

cannister capture and orbital rendezvous [1]. Vision-

based sensors have mostly been framing or push-broom 

style cameras which produce synchronous image data at 

defined frame rates. 

Event-based cameras, inspired by the behavior of 

biological visual sensors, are asynchronous vision 

sensors which sample incoming light based on the 

dynamics of the scene. Instead of producing snap-shot 

images of fixed size at a specified frame rate, they 

produce an asynchronous stream of events when a pixel 

intensity change is above a threshold. Each event is 

independent and defined by location and polarity of the 

pixel intensity change [2]. This is a paradigm shift from 

standard frame-based sensors. 

PANGU (Planet and Asteroid Natural scene 

Generation Utility) is a software suite that combines real 

and synthetic data to generate simulated frame-based 

sensor images (visual, thermal and LiDAR) of planetary 

surfaces, asteroids and spacecraft. It has been designed to 

support very large models (e.g. >50GB) and real-time 

closed-loop simulations with fast frame rates of 10Hz or 

better. The tool suite combines a surface modeler tool 

that can be used to import real data and enhance with 

synthetic data where required, with an integrated custom, 

GPU renderer, designed to generate representative sensor 

images. The renderer has a built-in GPU-based camera 

model which can apply noise, optical distortion and other 

camera effects in real-time for image simulation [3].  

In this paper we describe a new PANGU feature which 

provides simulated data to aid the development and 

testing of event-based sensor applications for guidance 

and navigation. We have extended our well-established 

framing sensor simulator to output data that simulates 

event-based sensors, focusing initially on logarithmic 

detectors as a popular variant. This adds a new sensor 

type to the simulation tool suite, producing simulated 

event-based sensor data in real-time as well as image-

based data that can accelerate external event-based 

sensor tools. The existing PANGU real-time camera 

model can be used to apply noise to event-based 

simulations. 

 

Event-based Cameras Overview. An event-based 

camera consists of three main analogue stages: a 

photodetector (typically logarithmic), a differencing 

circuit, and a pair of threshold detectors to generate 

ON/OFF events. A digital output stage detects, 

timestamps and emits events to a host system. The 

photodetector may drive a CMOS pixel for hybrid event-

based and frame-based detection. A logarithmic 

photodetector response means that the system responds 

to changes of brightness scale rather than level e.g. 2× 

brighter or 2× fainter. A simplified diagram of an event 

detector pixel is shown in Fig. 1, following Hu [4]. 

 

 
Figure 1. Simplified event-based pixel 

The differencing circuit compares the current voltage 

level to the level at the end of the previous reset. If the 

level exceeds the ON (θ+), or OFF (θ-), threshold levels, 

the corresponding event is latched. Once the event has 

been read, the comparison level of the differencing 

circuit is reset to the current voltage level. Since there is 

a delay between the detection of an event and the 

corresponding reset, the new comparison voltage is likely 

to be different to that when the event was raised. This 

may cause events to be lost. However, by extending the 

duration of resets (the refractory period), the maximum 

rate at which a pixel can generate an event is controlled 

without the loss of events from pixels with low event 

rates. The choice of thresholds determines how sensitive 

the detector is to changes in brightness scale. 
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The individual pixels in an event-based sensor respond 

independently to dynamic changes of light intensity. For 

each pixel, the logarithm of the intensity is stored after an 

event has been emitted. Then whenever the current 

logarithm of the intensity changes by more than a user-

set threshold value, the sensor generates an event. 

Events are emitted with the following information: 

• x, y pixel location 

• time t, 

• polarity (increase or decrease flag). 

 

This produces an asynchronous stream of events with 

the greater the change in the scene, the greater the number 

of events per second. 

Example sensors. A short summary of the critical 

parameters from some currently available event-based 

sensors are summarized in this section to give examples 

of the resolution, throughput and dynamic. The DAVIS 

346 sensor has a resolution of 346×260 pixels, a 

maximum throughput of 12 MEPS (mega events per 

second), typically latency of <1ms and a dynamic range 

of ~120 dB (0.1–100k lux with 50% pixel response to 

80% contrast) [5]. The DVXplorer Micro range of 

sensors have a higher maximum resolution of 640×400, 

a throughput range of 30–450, typically latency of <1ms 

and a dynamic range of ~110 dB (0.3–100k lux with 50% 

pixel response to 80% contrast. The Event Camera 

Evaluation Kit 4 HD IMX636 Prophesee-Sony sensor 

has a substantially higher resolution of 1280×720 and a 

dynamic range of more than 86dB (5 lux–100k lux). 

Data formats and sources. DAVIS24 is a publicly 

available dataset of event camera sample data, mostly 

taken from a DAVIS346 camera [5]. This contains a set 

of events generated from different scenarios in the 

AEDAT 2.0 format. AEDAT format versions 1.0, 2.0, 

3.0, 3.1 are 4.0 are defined on the iniVation website [6].  

 

 
Figure 2. jAER viewer playing a Davis346 data file 

AEDAT 2.0 and later formats begin with an XML 

human-readable header followed by the event data. The 

event data consists of a series of [address, timestamp] 

pairs for each event. The address and microsecond 

timestamp are both 32 bits wide. In AEDAT 2.0 the 

address format depends on the specific event-detector 

chip while AEDAT 3.0 and later use a chip-agnostic 

format. All integer data and fields are signed and big-

endian in AEDAT 2.0 and earlier; in AEDAT 3.0 and 

later they are little-endian [6]. An example snapshot from 

a DAVIS346 sensor file is shown running in the jAER 

event-viewer application in Fig. 2 which shows events 

generated from a moving hand with white pixels denoting 

positive events and black negative events. 

Event-based Sensor characteristics. Event-based 

sensors have potentially useful characteristics for space 

applications such as high temporal resolution and low 

latency (microseconds), a much higher dynamic range 

than CCD cameras (e.g. ~140dB vs 60dB) and low power 

usage, especially when the scene is not changing 

dramatically [2]. Fast motion can be captured without 

excessive blur more common to frame-based sensors, but 

noise and blurring are still issues to be managed in event-

based sensors [4]. The low latency is inherent because an 

event can be sent immediately after it is recorded, without 

a requirement to wait for other events to complete (or a 

whole frame). The high dynamic range is due to the 

receptors working on a logarithmic scale. These 

properties can be useful for real-time space applications, 

such as surface rovers or planetary landers in challenging 

lighting conditions [3], e.g., near the lunar South Pole 

which may have bright peaks and dark shadows in the 

same image frame, where the high dynamic range may be 

useful for detecting features for navigation purposes. 

Working with event-based sensors can be challenging, 

the sensor bus can become saturated with events, 

perturbing the times that events are sent, and processing 

the events to extract meaningful information can be 

difficult: algorithms must be developed that are different 

from frame-based processing systems [2]. Generating 

sufficient event-based data to support the testing and 

development of these sensors for use in space-based 

applications is also a challenge: this can be supported 

with simulated data if it can be shown to be representative 

of real scenarios. 

 

Related work. Event-based sensor data has been 

simulated from image sequences and video. Hu 

developed a toolbox (v2e) which generates events from a 

sequence of intensity images [4]. In v2e, event-based 

images may be produced in the form of a 2D histogram: 

each pixel records the polarity (increasing/decreasing) of 

the event and the number of events that occurred between 

two full image frames. The event count is obtained by 

dividing the difference in voltage by the threshold 

magnitude; the sign yields the direction [7]. Hu also 

highlighted issues with noise and hot-pixels, and suggests 

methods to simulate these artefacts [4]. 

Mueggler et al. describe an event-based simulator 

based on the DAVIS sensor [8] using the open-source 3D 

graphics software tool, Blender [9] to render images from 
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a 3D scene, along a trajectory, with a small motion 

between frames (1/3 pixel). A timestamp map is used to 

store the time of the previous event triggered at each 

pixel. This is combined with brightness changes between 

consecutive images frames to provide continuous 

asynchronous timestamps with events triggered by a 

contrast threshold [8]. This general approach is extended 

by Rebecq et al, who created the ESIM event camera 

simulator which adds an adaptive frame rate determined 

by the dynamics of the image changes [10]. 

Sikorski used PANGU to generate a sequence of raw 

images with floating-point precision and detector noise 

for realism. The images were converted into voltages by 

computing the logarithm of each pixel, and then used to 

determine the events generated by each pixel. Since 

multiple events might be generated by a pixel between 

two images, linear interpolation was used to estimate 

when each event might occur for a given pixel between 

the two frames taking latency into account [7].  

A related resource is EVREAL, which is an analysis 

suite designed to benchmark event-based video 

reconstruction techniques [11]. This is a potential 

resource that could be used to verify real-time event 

simulations through reconstructing images from the 

simulated events. 

 

Simulating Events in Real-time in PANGU. The 

approach taken to generate simulated events from a 

sequence of images is broadly based on the approach 

taken by Hu [4] which can be used to generate a realistic 

stream of events corresponding to that of an event-based 

detector observing the same scene. They describe how 

the v2e toolbox converts digitized image frames into 

events, with optional temporal up-scaling via slow-

motion interpolation. By including an event-based 

detector model within PANGU, we benefit from existing 

camera model features such as optical distortion and 

multiple sources of noise, the ability to generate floating 

point radiance images (e.g. without 8-bit quantisation), 

and support for closed-loop simulation with arbitrary 

inter-frame time intervals. This allows closed-loop 

simulations to depend on the analysis of events from 

previous images. 

Output data. Two types of data output are provided: 

the raw event images and the event data. Raw event 

images encode key information in the floating channels 

of an RGBA pixel. This includes the signed event count, 

the time of the first event within the frame, the reference 

log-intensity level, the temporal low-pass filter log-

intensity level and the time of the end of reset/refractory 

period. This is enough to allow the event data to be 

extracted and can be delivered to users quickly since it 

requires no further processing by PANGU. If event data 

(polarity, coordinates and timestamp) is requested, then 

PANGU will process the raw event image to extract the 

events. In doing so it will consider the time taken to scan 

the detector array extracting and emitting events onto the 

output bus; this may cause events to be lost in pixels that 

generate more than one and corresponds to read-out rate 

limits in real detectors. 

GPU-based event generation. The image-to-event 

conversion on the GPU process begins by obtaining the 

per-pixel logarithm of a grey-scale luma image which is 

passed through an intensity-dependent low-pass temporal 

filter matching the detector bandwidth, to obtain a value 

proportional to Vp of Fig. 1. This models the motion-blur 

effect that occurs in event-based detectors where pixels 

respond faster to large changes in brightness compared to 

small changes. For each pixel in the image, the filtered 

log-intensity level from the end of the previous reset 

period is reduced by leakage and the result, Vref, is 

subtracted from the current filtered log-intensity level to 

obtain the difference voltage Vdiff. If the reset/refractory 

time is zero, dividing Vdiff by the two per-pixel thresholds 

(θ+,θ-), yields the number of events that would be 

generated if the log-intensity varied consistently during 

the frame interval. The number of ON and OFF events is 

quantised to an integer using the floor operator to obtain 

Non and Noff; since θ+ and θ- have opposite signs, at most 

one of these can be non-zero. The new reference level for 

the pixel is: 

𝑉ref
′ = 𝑉ref + 𝑁on𝜃on + 𝑁off𝜃off 

Since Non and Noff are quantised, any extra voltage 

difference carries over to the next frame. 

A non-zero reset/refractory time introduces extra 

complexity, but it is important for modelling the ability 

to reduce the maximum event rate of the detector. If a 

given pixel is in reset for the duration of the frame, its 

reference level is updated to match the current filtered 

log-intensity level. Otherwise, Vdiff is scaled by the 

remaining reset time relative to the frame duration. This 

accounts for the time at the start of the frame when the 

pixel was tracking the filtered log-intensity value in reset. 

The event count computation is separated into two parts: 

first whether a single first ON or OFF event is generated; 

secondly, the number of extra reset-event periods that can 

occur if a first event is generated and Vdiff was adjusted 

after it. The reset period of the last extra event, if any, is 

not considered because it can extend to the next frame. 

Interactive event display. Before extracting events 

from the raw event images for the user, a GPU shader is 

used to display the filtered image and mark pixel events. 

An example of the event display is shown in Fig. 3 taken 

from a lunar Malapert landing sequence using a PANGU 

model of the DAVIS346 sensor. The filtered image is 

displayed with pixels having ON events drawn in green 

and those with OFF events drawn in red. Users can set 

the colour of ON and OFF events, and the fraction of the 

scene colour to use; the scene colour can be also 

suppressed in pixels that have events to prevent the event 

colours from becoming washed out. A background colour 
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can be set if scene pixel colours are not used: this is useful 

if the ON and OFF event colours are white and black. 

 

 
Figure 3. PANGU Davis346 event image of the Moon 

Event extraction. Having identified the number of ON 

or OFF events for each pixel, the time at which each 

event is raised is determined. It is assumed the events will 

occur uniformly throughout the frame duration albeit 

with random jitter. Dividing the frame duration into an 

equal number of event slots based on the event count 

determines the ideal time at which each event will occur. 

A random fraction of the event slot is added allowing the 

event to be raised at a random point within its slot. 

Modelling the Digital Read-out Process. The realism 

of the event-based detector model may be improved by 

considering the non-zero time required to detect and emit 

and event after it has been raised, and the arbitration 

method by which events are detected. Lichtsteiner et. al 

created an arbitrated non-greedy system which ensures 

that a row or column of pixels will not be serviced again 

until all other rows or columns with events have been 

serviced [12]. The read-out system can be considered to 

iterate over each row of the detector in sequence checking 

to see if any pixels in the row have generated an event. If 

a row with events is found, each column of the row is 

checked. If an event is raised for a given pixel, its address 

and polarity (ON vs OFF) are passed to the output bus, 

and the pixel is placed in reset. The reset lasts for the 

duration of the refractory period. 

The scanning process may be optimised by skipping 

rows or columns that have no events. The state of all 

events in a row could be captured and reset in parallel 

allowing them to be sent to the bus in a group with their 

row address. The detector array may be subdivided into 

a grid of detector tiles to reduce problems associated with 

scaling up per-pixel addressing to large arrays. 

The time needed to read out and reset each pixel or row 

along with the number of pixels with events will 

determine the interval between successive checks of a 

given pixel within a frame. After extracting an event and 

advancing the time counter, T, to account for its read-out, 

any subsequent events for the pixel that have a time less 

than T are discarded. This is because those events would 

be lost in the refractory/read-out time while waiting for 

the extracted event to be read and emitted.  

Noise Sources and Distortions. An event-based 

detector has some noise sources and distortions common 

with CMOS detectors: 

• point-spread function (aperture) 

• lens correction (vignetting) 

• radial or tangential distortion 

• depth of field  

• system efficiency, quantum efficiency 

• photon shot noise 

• per-pixel photo-response non-uniformity 

• thermal dark current 

• dark current non-uniformity and shot noise 

All these can be modelled by the real-time PANGU 

camera model. In addition, there are noise sources and 

distortions that are specific to an event-based detector: 

• junction leakage 

• per-pixel leakage scale variation 

• parasitic photocurrent 

• temporal bandwidth 

• static per-pixel threshold variance 

• event jitter/random variation 

Junction leakage can be modelled as the average 

leakage rate scaled by the frame interval, a dynamic 

random jitter with normal distribution, and a static per-

pixel log-normal variance factor. 

Parasitic photocurrent results from the leakage of light 

into the event detection circuitry causing additional 

photoelectrons to be generated in the differencing circuit. 

This reduces the reference level by a factor proportional 

to the light intensity and circuit quantum efficiency. 

The temporal bandwidth is proportional to the light 

intensity. It can be modelled as a leaky integrating low-

pass filter: the previous filtered log-intensity level is 

mixed with the current log-intensity level with the mixing 

proportion being the clamped product of the filter 

bandwidth and the light intensity. The clamping range is 

between a user-specified minimum and 1. The minimum 

value is needed to prevent low intensities having an 

infinitely narrow bandwidth and not updating. 

Static per-pixel threshold variations model the natural 

variation in threshold components. They can be modelled 

as a random bias drawn from a normal distribution with 

zero mean and user-defined standard deviation. 

The time at which events are raised for a given pixel 

can be modelled by dividing the frame interval into equal 

sized slots based on the number of events generated. The 

event is generated at a uniformly random fraction of its 

slot duration relative to the start of the slot. A slot fraction 

of 1 is expected which means that events are uniformly 

randomly distributed across their slots. 
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Results. A development test image showing a moving 

checkerboard is given in Fig. 4. The green pixels mark 

positive ON events and red mark negative OFF events; 

OFF events are spread out more than ON events due to 

the bandwidth filter. The visual image of the scene is 

rendered at 25% brightness. 

As a guide to the number of events generated, the 

measured range of events per frame is shown in Table 1, 

obtained using some different camera settings. We used 

the frame dimensions to match two event-based sensors, 

346×260 size for the DAVIS346 camera and 1280×720 

for the DVS1280x720SD camera. Results from different 

real-world scenarios at 1280×720 are shown in Table 2. 

 
Table 1: PANGU checkerboard event-based performance 

Dimension 

(pixels) 

DN 

Bias 

Rate 

(Hz) 

Events/ 

frame 

Events/ 

sec 

1280×720 0.3 8 30–40k 230–310k 

1280×720 0.6 27 20–30k 540–820k 

346×260 0.3 86 3–6k 260–520k 

346×260 0.6 91 3–5k 270–450k 

 

 
Figure 4. PANGU simulated event-based test image 

A more realistic scenario is shown in Fig. 5 which 

shows half of a PANGU frame from NEAR/MSI Eros 

flyover sequence 311 in event-based mode on the left 

(threshold=0.4, bias=0.1), and normal image on the right. 

Eros is rotating with the bottom half approaching and the 

top half receding hence the green (ON) and red (OFF) 

events along the top edges. 

The Malapert example is a simulated descent down to 

Malapert ridge near the Lunar South Pole and the number 

of events generated per frame varies from lower numbers 

during the initial phases of the descent and then 

substantially larger numbers towards the landing site. 

The Itokawa and Eros asteroid simulation scenarios each 

have a craft orbiting a small body and show a smaller 

range of events. In the Itokawa simulation, the body is 

viewed with the Sun behind the camera which results in 

a limited brightness variation. This causes events to be 

mainly around the edge of the body. In the Eros 

simulation, half of the body is in shadow with the rest 

showing wide variation in lighting conditions; Eros is 

also filling the field of view more than Itokawa does. 

 
Table 2: PANGU models event-based performance 

Model Dimension 

(pixels) 

Frame rate 

(Hz) 

Events/frame 

Malapert  1280×720 4.7 5–100k 

Itokawa 1280×720 8.7 2–3k 

Eros 1280×720 11.1 20–30k 

 

 
Figure 5. PANGU event (L) and visual (R) images of Eros 

Conclusions and future work. We have described the 

initial implementation of a real-time event-based sensor 

simulation, implemented within the PANGU tool suite in 

a real-time rendering system. Initial results are promising 

and show that up to 100k events/second can be generated 

on a representative lunar scenario and can be output as 

event images, event images mixed with visual images, 

event streams or event files. This allows PANGU to 

generate simulated events which could support the 

development and testing of future navigations and 

guidance systems using event-based sensors through 

providing simulated data for training and testing. 

Future work. Within the scope of the current project, 

the next plans are to provide TCP/IP access to event 

images and event data, and to allow event streams to be 

unicast over UDP (User Datagram Protocol) in a similar 

way to real event-based cameras. We plan to verify and 

validate the event-based simulations through 

comparisons with simulated event-streams from video, 

by comparison to real-event data and image 

reconstruction using standardized tools [11]. We will also 

obtain performance data from representative scenarios 

using UDP and TCP/IP. 
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