
4th Space imaging Workshop. Atlanta, GA.

7-9 October 2024.
1

Real-time event-based sensor simulation for space applications
Iain M. Martin1, Martin N. Dunstan1, Manuel Sanchez-Gestido2 and Joris Belhadj2, 1University of Dundee, Scotland,

UK, DD1 4HN, 2ESTEC, ESA, Noordwijk, The Netherlands). *[i.martin@dundee.ac.uk]

Abstract. Vision-based framing sensors are

well-established in the space community as a critical

component of guidance, navigation and control systems

for autonomous spacecraft control and landing. Event-

based sensors detect changes in pixel intensity levels, so

output an asynchronous stream of pixel events. Their

unique properties have some advantages for space

mission scenarios and navigation applications. To

support developments in this area, we describe how an

established real-time frame-based sensor simulator

(PANGU) is being extended to simulate event-based data

from logarithmic sensors for a variety of space

applications, and how the simulated data can be

evaluated with respect to standard event-based

calibration tools.

Introduction. Vision-based sensors have been

successfully used as a key component of Guidance,

Navigation and Control (GNC) systems onboard

spacecraft for a wide variety of autonomous missions and

maneuvers such as soft landings on Moons or asteroids,

cannister capture and orbital rendezvous [1]. Vision-

based sensors have mostly been framing or push-broom

style cameras which produce synchronous image data at

defined frame rates.

Event-based cameras, inspired by the behavior of

biological visual sensors, are asynchronous vision

sensors which sample incoming light based on the

dynamics of the scene. Instead of producing snap-shot

images of fixed size at a specified frame rate, they

produce an asynchronous stream of events when a pixel

intensity change is above a threshold. Each event is

independent and defined by location and polarity of the

pixel intensity change [2]. This is a paradigm shift from

standard frame-based sensors.

PANGU (Planet and Asteroid Natural scene

Generation Utility) is a software suite that combines real

and synthetic data to generate simulated frame-based

sensor images (visual, thermal and LiDAR) of planetary

surfaces, asteroids and spacecraft. It has been designed to

support very large models (e.g. >50GB) and real-time

closed-loop simulations with fast frame rates of 10Hz or

better. The tool suite combines a surface modeler tool

that can be used to import real data and enhance with

synthetic data where required, with an integrated custom,

GPU renderer, designed to generate representative sensor

images. The renderer has a built-in GPU-based camera

model which can apply noise, optical distortion and other

camera effects in real-time for image simulation [3].

In this paper we describe a new PANGU feature which

provides simulated data to aid the development and

testing of event-based sensor applications for guidance

and navigation. We have extended our well-established

framing sensor simulator to output data that simulates

event-based sensors, focusing initially on logarithmic

detectors as a popular variant. This adds a new sensor

type to the simulation tool suite, producing simulated

event-based sensor data in real-time as well as image-

based data that can accelerate external event-based

sensor tools. The existing PANGU real-time camera

model can be used to apply noise to event-based

simulations.

Event-based Cameras Overview. An event-based

camera consists of three main analogue stages: a

photodetector (typically logarithmic), a differencing

circuit, and a pair of threshold detectors to generate

ON/OFF events. A digital output stage detects,

timestamps and emits events to a host system. The

photodetector may drive a CMOS pixel for hybrid event-

based and frame-based detection. A logarithmic

photodetector response means that the system responds

to changes of brightness scale rather than level e.g. 2×

brighter or 2× fainter. A simplified diagram of an event

detector pixel is shown in Fig. 1, following Hu [4].

Figure 1. Simplified event-based pixel

The differencing circuit compares the current voltage

level to the level at the end of the previous reset. If the

level exceeds the ON (θ+), or OFF (θ-), threshold levels,

the corresponding event is latched. Once the event has

been read, the comparison level of the differencing

circuit is reset to the current voltage level. Since there is

a delay between the detection of an event and the

corresponding reset, the new comparison voltage is likely

to be different to that when the event was raised. This

may cause events to be lost. However, by extending the

duration of resets (the refractory period), the maximum

rate at which a pixel can generate an event is controlled

without the loss of events from pixels with low event

rates. The choice of thresholds determines how sensitive

the detector is to changes in brightness scale.

4th Space imaging Workshop. Atlanta, GA.

7-9 October 2024.
2

The individual pixels in an event-based sensor respond

independently to dynamic changes of light intensity. For

each pixel, the logarithm of the intensity is stored after an

event has been emitted. Then whenever the current

logarithm of the intensity changes by more than a user-

set threshold value, the sensor generates an event.

Events are emitted with the following information:

• x, y pixel location

• time t,

• polarity (increase or decrease flag).

This produces an asynchronous stream of events with

the greater the change in the scene, the greater the number

of events per second.

Example sensors. A short summary of the critical

parameters from some currently available event-based

sensors are summarized in this section to give examples

of the resolution, throughput and dynamic. The DAVIS

346 sensor has a resolution of 346×260 pixels, a

maximum throughput of 12 MEPS (mega events per

second), typically latency of <1ms and a dynamic range

of ~120 dB (0.1–100k lux with 50% pixel response to

80% contrast) [5]. The DVXplorer Micro range of

sensors have a higher maximum resolution of 640×400,

a throughput range of 30–450, typically latency of <1ms

and a dynamic range of ~110 dB (0.3–100k lux with 50%

pixel response to 80% contrast. The Event Camera

Evaluation Kit 4 HD IMX636 Prophesee-Sony sensor

has a substantially higher resolution of 1280×720 and a

dynamic range of more than 86dB (5 lux–100k lux).

Data formats and sources. DAVIS24 is a publicly

available dataset of event camera sample data, mostly

taken from a DAVIS346 camera [5]. This contains a set

of events generated from different scenarios in the

AEDAT 2.0 format. AEDAT format versions 1.0, 2.0,

3.0, 3.1 are 4.0 are defined on the iniVation website [6].

Figure 2. jAER viewer playing a Davis346 data file

AEDAT 2.0 and later formats begin with an XML

human-readable header followed by the event data. The

event data consists of a series of [address, timestamp]

pairs for each event. The address and microsecond

timestamp are both 32 bits wide. In AEDAT 2.0 the

address format depends on the specific event-detector

chip while AEDAT 3.0 and later use a chip-agnostic

format. All integer data and fields are signed and big-

endian in AEDAT 2.0 and earlier; in AEDAT 3.0 and

later they are little-endian [6]. An example snapshot from

a DAVIS346 sensor file is shown running in the jAER

event-viewer application in Fig. 2 which shows events

generated from a moving hand with white pixels denoting

positive events and black negative events.

Event-based Sensor characteristics. Event-based

sensors have potentially useful characteristics for space

applications such as high temporal resolution and low

latency (microseconds), a much higher dynamic range

than CCD cameras (e.g. ~140dB vs 60dB) and low power

usage, especially when the scene is not changing

dramatically [2]. Fast motion can be captured without

excessive blur more common to frame-based sensors, but

noise and blurring are still issues to be managed in event-

based sensors [4]. The low latency is inherent because an

event can be sent immediately after it is recorded, without

a requirement to wait for other events to complete (or a

whole frame). The high dynamic range is due to the

receptors working on a logarithmic scale. These

properties can be useful for real-time space applications,

such as surface rovers or planetary landers in challenging

lighting conditions [3], e.g., near the lunar South Pole

which may have bright peaks and dark shadows in the

same image frame, where the high dynamic range may be

useful for detecting features for navigation purposes.

Working with event-based sensors can be challenging,

the sensor bus can become saturated with events,

perturbing the times that events are sent, and processing

the events to extract meaningful information can be

difficult: algorithms must be developed that are different

from frame-based processing systems [2]. Generating

sufficient event-based data to support the testing and

development of these sensors for use in space-based

applications is also a challenge: this can be supported

with simulated data if it can be shown to be representative

of real scenarios.

Related work. Event-based sensor data has been

simulated from image sequences and video. Hu

developed a toolbox (v2e) which generates events from a

sequence of intensity images [4]. In v2e, event-based

images may be produced in the form of a 2D histogram:

each pixel records the polarity (increasing/decreasing) of

the event and the number of events that occurred between

two full image frames. The event count is obtained by

dividing the difference in voltage by the threshold

magnitude; the sign yields the direction [7]. Hu also

highlighted issues with noise and hot-pixels, and suggests

methods to simulate these artefacts [4].

Mueggler et al. describe an event-based simulator

based on the DAVIS sensor [8] using the open-source 3D

graphics software tool, Blender [9] to render images from

4th Space imaging Workshop. Atlanta, GA.

7-9 October 2024.
3

a 3D scene, along a trajectory, with a small motion

between frames (1/3 pixel). A timestamp map is used to

store the time of the previous event triggered at each

pixel. This is combined with brightness changes between

consecutive images frames to provide continuous

asynchronous timestamps with events triggered by a

contrast threshold [8]. This general approach is extended

by Rebecq et al, who created the ESIM event camera

simulator which adds an adaptive frame rate determined

by the dynamics of the image changes [10].

Sikorski used PANGU to generate a sequence of raw

images with floating-point precision and detector noise

for realism. The images were converted into voltages by

computing the logarithm of each pixel, and then used to

determine the events generated by each pixel. Since

multiple events might be generated by a pixel between

two images, linear interpolation was used to estimate

when each event might occur for a given pixel between

the two frames taking latency into account [7].

A related resource is EVREAL, which is an analysis

suite designed to benchmark event-based video

reconstruction techniques [11]. This is a potential

resource that could be used to verify real-time event

simulations through reconstructing images from the

simulated events.

Simulating Events in Real-time in PANGU. The

approach taken to generate simulated events from a

sequence of images is broadly based on the approach

taken by Hu [4] which can be used to generate a realistic

stream of events corresponding to that of an event-based

detector observing the same scene. They describe how

the v2e toolbox converts digitized image frames into

events, with optional temporal up-scaling via slow-

motion interpolation. By including an event-based

detector model within PANGU, we benefit from existing

camera model features such as optical distortion and

multiple sources of noise, the ability to generate floating

point radiance images (e.g. without 8-bit quantisation),

and support for closed-loop simulation with arbitrary

inter-frame time intervals. This allows closed-loop

simulations to depend on the analysis of events from

previous images.

Output data. Two types of data output are provided:

the raw event images and the event data. Raw event

images encode key information in the floating channels

of an RGBA pixel. This includes the signed event count,

the time of the first event within the frame, the reference

log-intensity level, the temporal low-pass filter log-

intensity level and the time of the end of reset/refractory

period. This is enough to allow the event data to be

extracted and can be delivered to users quickly since it

requires no further processing by PANGU. If event data

(polarity, coordinates and timestamp) is requested, then

PANGU will process the raw event image to extract the

events. In doing so it will consider the time taken to scan

the detector array extracting and emitting events onto the

output bus; this may cause events to be lost in pixels that

generate more than one and corresponds to read-out rate

limits in real detectors.

GPU-based event generation. The image-to-event

conversion on the GPU process begins by obtaining the

per-pixel logarithm of a grey-scale luma image which is

passed through an intensity-dependent low-pass temporal

filter matching the detector bandwidth, to obtain a value

proportional to Vp of Fig. 1. This models the motion-blur

effect that occurs in event-based detectors where pixels

respond faster to large changes in brightness compared to

small changes. For each pixel in the image, the filtered

log-intensity level from the end of the previous reset

period is reduced by leakage and the result, Vref, is

subtracted from the current filtered log-intensity level to

obtain the difference voltage Vdiff. If the reset/refractory

time is zero, dividing Vdiff by the two per-pixel thresholds

(θ+,θ-), yields the number of events that would be

generated if the log-intensity varied consistently during

the frame interval. The number of ON and OFF events is

quantised to an integer using the floor operator to obtain

Non and Noff; since θ+ and θ- have opposite signs, at most

one of these can be non-zero. The new reference level for

the pixel is:

𝑉ref
′ = 𝑉ref + 𝑁on𝜃on + 𝑁off𝜃off

Since Non and Noff are quantised, any extra voltage

difference carries over to the next frame.

A non-zero reset/refractory time introduces extra

complexity, but it is important for modelling the ability

to reduce the maximum event rate of the detector. If a

given pixel is in reset for the duration of the frame, its

reference level is updated to match the current filtered

log-intensity level. Otherwise, Vdiff is scaled by the

remaining reset time relative to the frame duration. This

accounts for the time at the start of the frame when the

pixel was tracking the filtered log-intensity value in reset.

The event count computation is separated into two parts:

first whether a single first ON or OFF event is generated;

secondly, the number of extra reset-event periods that can

occur if a first event is generated and Vdiff was adjusted

after it. The reset period of the last extra event, if any, is

not considered because it can extend to the next frame.

Interactive event display. Before extracting events

from the raw event images for the user, a GPU shader is

used to display the filtered image and mark pixel events.

An example of the event display is shown in Fig. 3 taken

from a lunar Malapert landing sequence using a PANGU

model of the DAVIS346 sensor. The filtered image is

displayed with pixels having ON events drawn in green

and those with OFF events drawn in red. Users can set

the colour of ON and OFF events, and the fraction of the

scene colour to use; the scene colour can be also

suppressed in pixels that have events to prevent the event

colours from becoming washed out. A background colour

4th Space imaging Workshop. Atlanta, GA.

7-9 October 2024.
4

can be set if scene pixel colours are not used: this is useful

if the ON and OFF event colours are white and black.

Figure 3. PANGU Davis346 event image of the Moon

Event extraction. Having identified the number of ON

or OFF events for each pixel, the time at which each

event is raised is determined. It is assumed the events will

occur uniformly throughout the frame duration albeit

with random jitter. Dividing the frame duration into an

equal number of event slots based on the event count

determines the ideal time at which each event will occur.

A random fraction of the event slot is added allowing the

event to be raised at a random point within its slot.

Modelling the Digital Read-out Process. The realism

of the event-based detector model may be improved by

considering the non-zero time required to detect and emit

and event after it has been raised, and the arbitration

method by which events are detected. Lichtsteiner et. al

created an arbitrated non-greedy system which ensures

that a row or column of pixels will not be serviced again

until all other rows or columns with events have been

serviced [12]. The read-out system can be considered to

iterate over each row of the detector in sequence checking

to see if any pixels in the row have generated an event. If

a row with events is found, each column of the row is

checked. If an event is raised for a given pixel, its address

and polarity (ON vs OFF) are passed to the output bus,

and the pixel is placed in reset. The reset lasts for the

duration of the refractory period.

The scanning process may be optimised by skipping

rows or columns that have no events. The state of all

events in a row could be captured and reset in parallel

allowing them to be sent to the bus in a group with their

row address. The detector array may be subdivided into

a grid of detector tiles to reduce problems associated with

scaling up per-pixel addressing to large arrays.

The time needed to read out and reset each pixel or row

along with the number of pixels with events will

determine the interval between successive checks of a

given pixel within a frame. After extracting an event and

advancing the time counter, T, to account for its read-out,

any subsequent events for the pixel that have a time less

than T are discarded. This is because those events would

be lost in the refractory/read-out time while waiting for

the extracted event to be read and emitted.

Noise Sources and Distortions. An event-based

detector has some noise sources and distortions common

with CMOS detectors:

• point-spread function (aperture)

• lens correction (vignetting)

• radial or tangential distortion

• depth of field

• system efficiency, quantum efficiency

• photon shot noise

• per-pixel photo-response non-uniformity

• thermal dark current

• dark current non-uniformity and shot noise

All these can be modelled by the real-time PANGU

camera model. In addition, there are noise sources and

distortions that are specific to an event-based detector:

• junction leakage

• per-pixel leakage scale variation

• parasitic photocurrent

• temporal bandwidth

• static per-pixel threshold variance

• event jitter/random variation

Junction leakage can be modelled as the average

leakage rate scaled by the frame interval, a dynamic

random jitter with normal distribution, and a static per-

pixel log-normal variance factor.

Parasitic photocurrent results from the leakage of light

into the event detection circuitry causing additional

photoelectrons to be generated in the differencing circuit.

This reduces the reference level by a factor proportional

to the light intensity and circuit quantum efficiency.

The temporal bandwidth is proportional to the light

intensity. It can be modelled as a leaky integrating low-

pass filter: the previous filtered log-intensity level is

mixed with the current log-intensity level with the mixing

proportion being the clamped product of the filter

bandwidth and the light intensity. The clamping range is

between a user-specified minimum and 1. The minimum

value is needed to prevent low intensities having an

infinitely narrow bandwidth and not updating.

Static per-pixel threshold variations model the natural

variation in threshold components. They can be modelled

as a random bias drawn from a normal distribution with

zero mean and user-defined standard deviation.

The time at which events are raised for a given pixel

can be modelled by dividing the frame interval into equal

sized slots based on the number of events generated. The

event is generated at a uniformly random fraction of its

slot duration relative to the start of the slot. A slot fraction

of 1 is expected which means that events are uniformly

randomly distributed across their slots.

4th Space imaging Workshop. Atlanta, GA.

7-9 October 2024.
5

Results. A development test image showing a moving

checkerboard is given in Fig. 4. The green pixels mark

positive ON events and red mark negative OFF events;

OFF events are spread out more than ON events due to

the bandwidth filter. The visual image of the scene is

rendered at 25% brightness.

As a guide to the number of events generated, the

measured range of events per frame is shown in Table 1,

obtained using some different camera settings. We used

the frame dimensions to match two event-based sensors,

346×260 size for the DAVIS346 camera and 1280×720

for the DVS1280x720SD camera. Results from different

real-world scenarios at 1280×720 are shown in Table 2.

Table 1: PANGU checkerboard event-based performance

Dimension

(pixels)

DN

Bias

Rate

(Hz)

Events/

frame

Events/

sec

1280×720 0.3 8 30–40k 230–310k

1280×720 0.6 27 20–30k 540–820k

346×260 0.3 86 3–6k 260–520k

346×260 0.6 91 3–5k 270–450k

Figure 4. PANGU simulated event-based test image

A more realistic scenario is shown in Fig. 5 which

shows half of a PANGU frame from NEAR/MSI Eros

flyover sequence 311 in event-based mode on the left

(threshold=0.4, bias=0.1), and normal image on the right.

Eros is rotating with the bottom half approaching and the

top half receding hence the green (ON) and red (OFF)

events along the top edges.

The Malapert example is a simulated descent down to

Malapert ridge near the Lunar South Pole and the number

of events generated per frame varies from lower numbers

during the initial phases of the descent and then

substantially larger numbers towards the landing site.

The Itokawa and Eros asteroid simulation scenarios each

have a craft orbiting a small body and show a smaller

range of events. In the Itokawa simulation, the body is

viewed with the Sun behind the camera which results in

a limited brightness variation. This causes events to be

mainly around the edge of the body. In the Eros

simulation, half of the body is in shadow with the rest

showing wide variation in lighting conditions; Eros is

also filling the field of view more than Itokawa does.

Table 2: PANGU models event-based performance

Model Dimension

(pixels)

Frame rate

(Hz)

Events/frame

Malapert 1280×720 4.7 5–100k

Itokawa 1280×720 8.7 2–3k

Eros 1280×720 11.1 20–30k

Figure 5. PANGU event (L) and visual (R) images of Eros

Conclusions and future work. We have described the

initial implementation of a real-time event-based sensor

simulation, implemented within the PANGU tool suite in

a real-time rendering system. Initial results are promising

and show that up to 100k events/second can be generated

on a representative lunar scenario and can be output as

event images, event images mixed with visual images,

event streams or event files. This allows PANGU to

generate simulated events which could support the

development and testing of future navigations and

guidance systems using event-based sensors through

providing simulated data for training and testing.

Future work. Within the scope of the current project,

the next plans are to provide TCP/IP access to event

images and event data, and to allow event streams to be

unicast over UDP (User Datagram Protocol) in a similar

way to real event-based cameras. We plan to verify and

validate the event-based simulations through

comparisons with simulated event-streams from video,

by comparison to real-event data and image

reconstruction using standardized tools [11]. We will also

obtain performance data from representative scenarios

using UDP and TCP/IP.

Acknowledgements. PANGU was developed by the

University of Dundee for ESA and is being used in many

European activities aimed at producing precise, robust

planetary lander and rover guidance systems. This work

was performed under ESA contract number

4000143650/24/NL/CRS/nh.

4th Space imaging Workshop. Atlanta, GA.

7-9 October 2024.
6

References.
[1] I.Martin, S.Parkes, M.Dunstan, M.Sanchez-Gestido, G.Ortega,

“Simulating planetary approach and landing to test and verify

autonomous navigation and guidance systems”, ESA GNC 2017,
Salzburg, May 29th–June 2nd, 2017.

[2] G.Gallego et al., “Event-based Vision: A Survey”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, Jan. 2022,
pp. 154-180, vol. 44, 2022, DOI: 10.1109/TPAMI.2020.3008413.

[3] I.Martin, S.Parkes, M.Dunstan, M.Sanchez-Gestido, “Simulating

Lunar Approach and Pinpoint Landings Through Enhancing Dems and
Realistic Image Generation”, 12th International Conference on

Guidance, Navigation & Control Systems (GNC), Sopot, Poland, June

2023.
[4] Y.Hu, S-C.Liu, T.Delbruck, “v2e: From Video Frames to

Realistic DVS Events”, Proc. IEEE/CVF Conf. Computer Vision and

Pattern Recognition, 2021, DOI: 10.1109/CVPRW53098.2021.00144.
[5] T.Delbruck, "DAVIS24: DAVIS Event Camera Sample Data",

Available from: https://sites.google.com/view/davis24-davis-sample-

data/home.
[6] AEDAT Event format, defined in website:

https://docs.inivation.com/software/software-advanced-usage/file-

formats/index.html. Accessed May 31st 2024.
[7] O.Sikorski, D.Izzo, G.Meoni, “Event-based spacecraft landing

using time-to-contact”, Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR) Workshops, 2021,
pp.1941–1950, DOI: 10.1109/CVPRW53098.2021.00222.

[8] E.Mueggler, H.Rebecq, G.Gallego, T.Delbruck, D.Scaramuzza,

“The Event-Camera Dataset and Simulator: Event-based Data for Pose
Estimation, Visual Odometry, and SLAM”, International Journal of

Robotics Research, Vol. 36, Issue 2, pages 142-149, Feb. 2017.

[9] https://www.blender.org/, accessed 23/09/2024.
[10] H. Rebecq, D. Gehrig, D. Scaramuzza, "ESIM: an Open Event

Camera Simulator", 2nd Conference on Robot Learning, Proceedings

of Machine Learning Research, No. 87, pp 969-982, 2018.
[11] B. Ercan, O. Eker, A. Erdem and E. Erdem, “EVREAL:

Towards a Comprehensive Benchmark and Analysis Suite for Event-

based Video Reconstruction”, Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition Workshops,

2023, pp.3943–3952, DOI: 10.1109/CVPRW59228.2023.00410.

[12] P.Lichtsteiner, C.Posch, T.Delbruck, “A 128×128 120 dB 15 μs
Latency Asynchronous Temporal Contrast Vision Sensor”, in IEEE

Journal of Solid-State Circuits, 43(2), pp.566–576, 2008, DOI:

10.1109/JSSC.2007.914337.

https://sites.google.com/view/davis24-davis-sample-data/home
https://sites.google.com/view/davis24-davis-sample-data/home
https://docs.inivation.com/software/software-advanced-usage/file-formats/index.html
https://docs.inivation.com/software/software-advanced-usage/file-formats/index.html
https://www.blender.org/

