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Abstract. Neural Radiance Fields (NeRFs) are a 

promising new machine learning-driven computer vision 

technology that may have many future applications in 

spaceflight problems. This paper provides a short 

background of the theory and assumptions behind NeRFs 

and how they can be used for 3D view synthesis and 

shape reconstruction, then applies a popular NeRF 

algorithm to the problem of asteroid shape modeling 

using real image and trajectory data of the asteroid 

Bennu. Results are compared to the shape model 

generated by the OSIRIS-REx mission. 

Introduction. Since the publication of the originating 

paper in 2020,[1] one of the most active new topics in 

computer vision research has been Neural Radiance 

Fields (NeRFs), also known as “neural rendering 

techniques”, which are capable of generating implicit, 

highly photo-realistic, novel views of complex, non-

Lambertian 3D environments after being trained on a set 

of 2D images with known poses. Once trained, the model 

can be sampled at any input pose to yield local color and 

volume density outputs which are then used to generate a 

novel image via fast volume rendering techniques. Since 

then, hundreds of new techniques have been devised to 

improve on the original formulation and extended it to 

new use cases and applications including scene 

relighting, video synthesis, pose estimation, and more.[2]  

Neural Radiance Fields. In contrast to classical, 

Structure from Motion (SfM) techniques for 

reconstructing a 3D scene from a sequence of 2D images, 

NeRF algorithms do not encapsulate the 3D geometry of 

the scene in terms of explicit landmarks, control points, 

or point clouds. Instead, the environment is represented 

using a field that is approximated by a neural network, or 

by a plenoxel grid,[3] which describes the color and 

volume density of every point and every viewing 

direction in the scene. At a high level, the NeRF can be 

understood mathematically as 

𝐹(𝐱, 𝜃, 𝜙) → (𝑐, 𝜎) 

which is a mapping between position vector x and 

azimuth and elevation angles θ and ϕ respectively (or, 

equivalently, a 3D unit vector) to a space of color c and 

volume density σ. The volume density, which captures 

how much radiance is accumulated by a given ray in 

space, is constrained to be independent of viewing 

direction while the color can depend on both the viewing 

direction and position. This function is approximated 

using one or more Multi-Layer Perceptrons (MLPs) 

resulting in an estimated field 𝐹Θ.  

To render a novel image 𝑅 using a NeRF, the pixels of 

the query image are turned into rays in space 

parameterized by 

𝐫 = 𝐨 + 𝑡𝑖𝐝(𝜃, 𝜙) 

where 𝐨 is the camera center. The field can then be 

sampled distinct distances 𝑡𝑖 along direction vector 𝐝. 

The (𝑐𝑖 , 𝜎𝑖) samples are then composited together into a 

single color output 𝐶 via numerical quadrature of the 

volume rendering equation, 

𝐶 =∑exp⁡ (−∑𝜎𝑗𝛿𝑗
𝑗<𝑖

)

𝑖

(1 − exp(−𝜎𝑖𝛿𝑖))𝑐𝑖 

where 𝛿 = 𝑡𝑖 − 𝑡𝑖−1 is the distance between successive 

points along the ray. During training, the loss 

𝐿 =∑‖𝐶̂ − 𝐶𝑡𝑟𝑢𝑡ℎ‖2
2

𝑟∈𝑅

 

is computed and minimized so that the field output 

matches the ground truth training images. The position 

and direction inputs are typically passed through a 

“positional encoding” in order to better capture higher-

frequency information and render higher quality images. 

The details of this and other aspects of the pipeline vary 

wildly between extant implementations and variations. 

NeRFs for Asteroid Shape Modeling. The problem 

of turning a sequence of images into a 3D shape model is 

encountered in spaceflight research in a number of areas, 

notably Rendezvous and Proximity Operations (RPO) 

and asteroid shape modeling. While neural rendering 

techniques are beginning to be explored for the former 

application,[4] to the knowledge of the author they have 

never been applied to the latter application up to this 

point. 

Many aerospace authors have pointed out that the 

asteroid shape modeling problem presents very 

challenging conditions for vision-based relative 

navigation and SfM pipelines.[5] Spacecraft safety 

considerations as well as the extreme low gravity 

environments of many asteroids result in spacecraft 

approach and orbital velocities on the order of 

centimeters per second, making the true parallax between 

successive images very small. Meanwhile, the asteroid is 

typically rotating on its axis, causing large changes in 

lighting conditions and visual feature appearance over 

significantly shorter time intervals. These factors cause 

many standard SfM algorithms, typically based on visual 

feature matching techniques, to fail. 

The challenge of varying lighting conditions is one that 

prior NeRF authors have approached in the context of 
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“unconstrained photo collections” derived from internet 

searches. Images taken from different cameras at 

different times of day with different weather conditions 

and possible occlusions can result in subpar performance 

in the original NeRF framework which relied on a “static 

environment” assumption. To address this drawback, 

“NeRF-in-the-Wild”[6] added the capability of learning 

a latent “appearance embedding” for each image that 

captures photometric and environmental variations 

between images found “in the wild”. This approach 

effectively decouples static and transient components of 

the scene into different MLPs and was demonstrated by 

reconstructing large outdoor scenes. The methodology 

has since been incorporated into many subsequent NeRF 

algorithms. 

Another challenge of the shape modeling problem is 

that, as outlined previously, NeRF algorithms do not 

natively produce an explicit mesh or “shape model” of 

the environment. They simply create an input-output map 

that captures the scene implicitly. Converting this output 

into a more explicit representation such as a mesh or 

voxel grid is a growing area of NeRF research due to its 

potential to provide data products useful for applications 

outside of novel view synthesis. The original NeRF 

authors proposed the use of the “marching cubes” 

algorithm for this purpose and more recent authors have 

taken advantage of signed distance functions (SDFs) for 

improved surface recovery and rendering speed.[7] 

Algorithm Selection. Given the aforementioned 

requirements on a NeRF algorithm appropriate for the 

asteroid shape modeling task, we sought an algorithm 

that included both appearance embedding and high 

quality mesh generation. NVIDIA’s Instant-NGP, 

released in 2022,[8] provides both of these tools and the 

added benefit of extremely fast, parallelizable training by 

leveraging a smaller neural network enabled by a novel 

multiresolution hash table input encoding. Instant-NGP 

is also capable of optimizing the pose of the camera given 

an initial set of estimated poses as well as camera 

calibration parameters and more. The official version of 

the code is available through NVIDIA but an open source 

implementation of Instant-NGP is available in the 

Nerfstudio project.[9]  

 
Figure 1. Example MAPCam image from OSIRIS-

REx image sequence. 

 

In 2023, NVIDIA also released Neuralangelo[10], an 

algorithm with the stated goal of creating high-quality 

shape models from a neural radiance field. These two 

algorithms were assessed for the asteroid problem in this 

work. 

Bennu Dataset. The OSIRIS-REx spacecraft arrived 

at the 500-meter wide asteroid Bennu in December of 

2018. It carried the OCAMS camera suite,[11] a three-

camera package to observe and map the asteroid across 

varying distances and resolutions over the mission 

lifetime. The raw data from these cameras is available on 

the mission’s node on the Planetary Data Sciences 

website. From these sources, we obtained a sequence of 

37 images taken by the spacecraft’s MAPCam between 

00:47:30 UTC and 05:04:57 UTC on December 13, 2018 

which provide medium-resolution coverage of the 

asteroid over a full rotation period. One such image is 

shown in Figure 1. The MAPCam has a focal length of 

125 mm and the image sensor has a pixel pitch of 8.5µm. 

Instead of using a software like COLMAP to obtain the 

spacecraft poses, which is typical in NeRF pipelines but 

turns out to be problematic in this scenario, we utilized 

the estimated location and attitude of the spacecraft at the 

image times from the mission SPICE kernels available 

online from NASA's Navigation and Ancillary 

Information Facility (NAIF) website. These resources 

were used to create a suitable dataset in the IAU Bennu-

fixed frame to be processed by Instant-NGP. The 

resulting image sequence is plotted in Figure 2. 

 
Figure 2. Camera pose trajectory in Bennu body-

fixed frame 

Results. Initial results of Instant-NGP on the Bennu 

dataset are promising. With an appearance embedding of 

the same size as the image sequence length, the algorithm 

successfully recovers the shape of the asteroid in 3D after 

training for less than five minutes on a Windows laptop 

with an RTX4000. Novel views are generated at 30 

frames per second. One of these, as well as a shape model 

derived from the field, are shown in Figure 3. Due to the 

changing lighting conditions across the image sequence, 

the lighting in the synthesized image is not representative 

of a particular lighting condition or sun direction. Instead, 

it is a synthesis of the lit geometry in all the images, with 

each having an estimated lighting direction. The shape 

model in Figure 3b shows that the 3D geometry of the 
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scene is being accurately captured by the field, albeit with 

some artifacts present. It is likely that these results can be 

improved with further hyperparameter tuning and/or 

additional input images. 

 
a) 

 
b) 

 

 

Figure 3. a) A novel image of asteroid Bennu and b) a 

derived shape model generated by NVIDIA’s Instant-

NGP after 3 minutes of training on a laptop. 

We assessed the accuracy of the reconstructed shape 

by comparing it to one of the shape models generated by 

the OSIRIS-REx mission. This is done efficiently by 

building a KD-tree of the vertices of the reference shape 

model and then computing the average Cartesian 

position difference to the k-nearest neighbors to each 

vertex of the NeRF shape model, where in this case k=3. 

These error points are then parameterized by latitude 

and longitude and then binned so that a 2D contour plot 

of the position errors can be generated. After scaling the 

result to real-world units, we obtain Figure 4. Note that 

the error is computed as truth minus NeRF. Given that 

the asteroid is approximately 500 meters across, the 

errors are generally on the order of 2% or less with a 

median value of -1.049 meters. The camera is about 10 

kilometers from the surface at any given time. There 

does not seem to be a general trend in these errors in 

latitude or longitude but pockets of high negative errors 

are evident across the map. 

Similarly, Figure 6 and 7 showcase the analogous 

results derived using Neuralangelo. Training for 

Neuralangelo took significantly longer than Instant-

NGP, on the order of 18 hours on a Linux machine with 

a single Tesla T4. However, the visual appearance of 

the shape model is much more detailed than the shape 

derived from Instant-NGP, and the errors in Figure 7 are 

appreciably lower. The median value of the errors from 

Neuralangelo is -0.4554 meters and fewer concentrated 

regions of significantly negative errors are visible. 

 
Figure 6. Image of shape model generated by 

NVIDIA’s Neuralangelo. 

Conclusion. Neural radiance fields and related deep 

learning technologies are a rapidly expanding field that 

deserves the attention of aerospace vision professionals. 

Using some available algorithms, we have shown that 

these algorithms, in their current state, are capable of 

providing good performance on the challenging asteroid 

shape modeling task with a limited set of images. While 

the computational requirements for these algorithms is 

likely higher than current onboard computing resources 

permit, opportunities for lowering these requirements 

will likely manifest in future NeRF algorithms in 

parallel with forthcoming improvements in available 

onboard computing hardware.  

 

Figure 5. Shape errors computed with Instant-NGP with respect to 

Bennu_v20_200k.obj from OSIRIS-REx 
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Figure 7. Shape errors computed with Neuralangelo with respect to 
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