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Abstract. A major challenge for vision-based appli-

cations for the Moon is large illumination variance that

is caused by a combination of the sun position, topogra-

phy, and lack of sky illumination due to the absence of

an atmosphere. This diminishes the capability to recog-

nize terrain features or landmarks that are critical for

autonomous robotic operations, including spacecraft pin-

point landing and navigation. In this paper we explore

deep learning for learning illumination invariant features

in the challenging Lunar domain.

Introduction. The success of Terrain Relative Nav-

igation (TRN) systems often hinges on consistent light-

ing conditions between the stored orbital imagery and

the real-time conditions during landing. The Mars2020

mission benefited from landing during the late after-

noon, closely matching the lighting conditions of its ref-

erence imagery. This alignment is crucial as variations

in lighting can significantly alter terrain appearance, po-

tentially compromising the TRN system’s performance.

Consequently, the operational window of the spacecraft is

severely constrained to a brief amount of time where this

alignment is present. This is particularly problematic on

the Lunar south pole where the very low sun elevation an-

gles create extreme illumination discontinuities and large

shadows that are very difficult to match at different times

of day (see Figure 1).

Such conditions can make methods like normalized

cross-correlation (NCC) and descriptor-based feature

matching less effective. While these classical methods

(such as SIFT1) address scale and rotation variations be-

tween images with some level of robustness, they tend to

struggle in low-texture situations and with visual appear-

ance gaps that are usually the product of large illumina-

tion variances. In response to the shortcomings of these

methods, deep learning approaches2,3 produce more ro-

bust features via the exchange of spatial and visual infor-

mation between keypoints, either through convolutions or

Graph Neural Networks. More recently,4,5 keypoint de-

tection has been replaced with dense matching that allows

the combination of information in a global context.

This paper explores a deep learning method for image

matching, and introduces a training strategy to learn ro-

bust illumination invariant matching under very challeng-

ing lighting conditions. Out of the large number of meth-

ods in the literature we choose to adopt Local Feature

Matching with Transformers (LoFTR)4 for three reasons:

1) It is a modular and relatively simple architecture that
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Figure 1. Renderings of the Lunar south pole with

sun elevation angle of 2o and various sun azimuth

angles (top right of each map) that create extreme

illumination discontinuities and large shadows.

can be easily built upon, 2) it uses Transformers6 which

are currently the main building block of many state-of-

the-art models in computer vision, and 3) it has a good

computational complexity vs performance trade-off as it

is a rather modestly sized model (11.5M parameters). We

view LoFTR as a proof of concept model for addressing

extreme illumination variation in planetary applications

with the opportunity for further development.

The LoFTR off-the-shelf model is pre-trained on the

large in-the-wild Megadepth7 dataset that offers challeng-

ing viewpoint, scale, and illumination variations. While

the model trained on Megadepth shows some level of gen-

eralization to previously unobserved data, it is typically

a challenge for data-driven methods to perform well out-

side the distribution of the data that they were trained

on. This issue is even more pronounced in our settings

as the extreme illumination changes present in the Lu-

nar south pole imagery appear drastically different from

typical outdoor images. Therefore, it is necessary to fine-

tune the model to data from the Lunar domain. However,

the main bottleneck is the absence of relevant, large-scale

data that would allow the fine-tuning of deep learning

models in this domain.

Synthetic Datasets with Lunar Imagery. There

are several challenges in using real data from the Lu-

nar domain for training. First, the orbit determination

solution for the Lunar Reconnaissance Orbiter (LRO)

lacks the accuracy with respect to ephemeris and atti-

tude that would produce pixel-level correspondences nec-

essary for supervision. Second, traditional Structure-

from-Motion (SfM) methods, that are typically used to

produce ground-truth, fail at the south pole due to the

challenging lighting conditions. Finally, coverage over lo-

cations and illumination conditions is not complete. We

aim to circumvent these issues by using Digital Eleva-

tion Maps (DEMs) of the Lunar south pole in simulation

software that provide control over illumination conditions

and camera poses. In this work, we present two simulated

datasets and demonstrate that they are suitable for train-
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Figure 2. Procedure for creating Ortho-to-Ortho training pairs. We first divide every anchor map into a

predetermined set of windows that we keep constant throughout this process. Then we randomly sample

a window from an observation map and form training pairs with the overlapping windows in the anchor.

This allows us to produce pairs with varying translation differences. Finally we sample ground-truth

correspondences for each pair, which are filtered out from large shadow areas.

Figure 3. Examples of Perspective-to-Perspective pairs with sun angles shown on top of each image.

The top left image (cam0) is paired with all other frames (cam1) that exhibit variations in illumination

conditions. Note that frames with increased amount of shadows are discarded (second in bottom row).

ing illumination invariant image matching models.

Ortho-to-Ortho Pairs. First, we are interested in a

quantitative evaluation of the model for its robustness to

extreme illumination variations without the presence of

other challenging factors (e.g., scale and viewpoint vari-

ations). To do so we use JPL-developed simulation soft-

ware that renders Lunar imagery by hillshading DEMs

from the Lunar Orbiter Laser Altimeter (LOLA8). We

generate maps of size 150km×150km with 10m per pixel

resolution from the Lunar south pole using orthographic

projection. In order to simulate the illumination condi-

tions in the Lunar domain, the maps are rendered with

sun elevation angles between 0o to 4o with step of 1o, and

with sun azimuth angles between 0o to 330o with step of

30o.

Our objective is to train the model to produce robust

matches regardless of the sun angle differences between

two images. A naive training approach would be to create

training pairs with all illumination combinations and su-

pervise the model to produce accurate matches. However,

such an approach has two main problems: 1) it forces the

model to fit a solution to any illumination variation, which

is very challenging due to the very large number of com-

binations, and 2) it is impractical to generate sufficient
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Figure 4. Quantitative comparison between SIFT (top row), off-the-shelf LoFTR model (middle), and

trained LoFTR-fine (bottom) on the seen “180E” map of the Ortho-to-Ortho dataset. The last column

shows the error distribution of the matches (in pixels) when azimuth and elevation difference is 180o

and 1o respectively. The off-the-shelf model is showing a vertical bias which is fixed when the model is

trained on Lunar imagery. SIFT had no matches with reprojection error less than 5 for this illumination

configuration.

Figure 5. Performance of the trained LoFTR-fine on the unseen “0E” map of the Ortho-to-Ortho dataset.

Even though there is a drop in matching accuracy compared to the evaluation on the seen “180E” map

(see Figure 4), the model still produces a very large number of accurate matches, suitable for downstream

tasks.

training pairs using all possible combinations. Instead,

we create a training dataset over a subset of illumination

conditions and show that the model is able to generalize

to arbitrary illumination conditions.

Specifically, we define two sets of maps, the “anchors”

and the “observations”. Every training pair is created

by sampling one map from each set. The “anchors” are

rendered with a constrained set of illumination conditions

(sun elevation angles of 2o and 4o and sun azimuth of 0o,

90o, 180o, and 270o for a total of 8 maps), while “obser-

vations” are unconstrained. Using the “anchor” map set

significantly reduces the amount of training pairs required

to learn illumination invariant features. Three of the an-

chor maps are shown in Figure 1. In practice, the training

pairs are created by sampling windows over the maps in

order to vary the overlap between the images. We gener-

ated approximately 25K training pairs. This procedure is

illustrated in more detail in Figure 2.
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Figure 6. Results of the off-the-shelf LoFTR model (top), and trained LoFTR-fine (bottom) on the

PerspA test set. Following a similar trend to the Ortho-to-Ortho experiments, the trained LoFTR is

able to produce a large number of accurate matches even at the most difficult case of azimuth difference

of 180o.

Figure 7. Results of the off-the-shelf LoFTR model (top), and trained LoFTR-fine (bottom) on the

PerspB test set. PerspB contains larger attitude changes than the training set LoFTR-fine was trained

on. Despite the drop in performance, the model is able to generalize on this test set and produce a large

number of accurate matches.

Perspective-to-Perspective Pairs. While the Ortho-to-

Ortho dataset is suitable for evaluating robustness to var-

ious illumination conditions, it is not representative of the

conditions during entry, descent, and landing, where the

spacecraft is using a downward-looking perspective cam-

era without perfect pointing knowledge.

In order to generate a representative dataset, we

employ the open-source simulation software Blender9

that offers the physically-based rendering engine Cycles.

Blender can produce photorealistic renders by simulat-

ing global illumination effects, by incorporating realistic

shader functions and by modeling the camera’s intrinsic

parameters. In addition, it offers a Python interface, that

allowed us to implement a Python wrapper to provide

inputs to the simulation software.

In particular, we imported a 70km × 70km with 10m

per pixel resolution DEM from the Lunar south pole and

defined two perspective cameras (cam0, cam1 ) with hor-

izontal field-of-view of 100o. During generation of the

pairs, we kept cam0 pointing downwards with no pose

variation (i.e., yaw = 0o, pitch = 0o, roll = 0o) and with

constant sun angles (elevation = 4, azimuth = 0). Then
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Figure 8. Matching examples on the Ortho-to-Ortho test set using trained LoFTR-fine, the off-the-shelf

LoFTR model, and SIFT, a classical method. The images were rendered with sun elevation angle of 2o

and the sun azimuth angle difference is shown at the top for each pair. LoFTR-fine produces much more

consistent and accurate matches between the images in spite of the large illumination difference.

Figure 9. LoFTR is able to generalize to LROC-NAC images after it was trained on the synthetic Ortho-

to-Ortho Lunar images. For the matching examples (left) we show the sun azimuth angle difference at

the top of each pair. On the right, we demonstrate a mosaic created from NAC images captured at

different illumination conditions.

we sample cam1 poses in terms of orientation (yaw = 0o,

15o > pitch > 0o, 15o > roll > 0o) and translation with

respect to cam0 of maximum of 500m. Altitude for both

cameras is set to 3km. For every sampled cam1 we check

the co-visibility with cam0 in order to ensure enough over-

lap between the paired renderings. Finally, every cam1

pose is rendered with different combinations of sun angles

with elevation between 2o to 6o with step of 2o, and with

azimuth between 0o to 315o with step 45o. Thus, for ev-

ery cam0 frame, we pair it with 24 cam1 frames. In total

we generate 8920 training pairs. A few examples of these

pairs can be seen in Figure 3.

Experimental Evaluation. We present experiments

on simulated and real data. In particular, we compare

an off-the-shelf deep learning-based model (LoFTR4) to

a traditional method (SIFT1) and to a fine-tuned model

that we refer to as LoFTR-fine. The datasets are chal-

lenging and contain large illumination variations. The

reported results show that traditional methods typically

fail under these conditions, and that while the off-the-
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Figure 10. Matching examples on the PerspB test set that contains large attitude variations. Elevation

and azimuth sun angles are shown above each image. LoFTR-fine is able to robustly find matches

regardless of attitude and illumination change, while the off-the-shelf model starts failing in the presence

of large illumination difference.

Figure 11. Visualization of how transformer blocks in LoFTR-fine incorporate context from the entire

image when estimating the feature representation for a particular point. Here we show these for cor-

responding points (shown in blue) on images from the PerspA dataset with sun azimuth angles shown

at the top of each image. The top 50 locations with the highest attention weights (green points) are

shown to the left of each pair of images, while the entire heatmap is shown to the right. There are

two important observations: 1) The model focuses on salient locations such as craters, and 2) These

locations are consistent between varying lighting conditions.

shelf model shows some level of generalization, it does not

consistently produce accurate results and is convincingly

outperformed by its fine-tuned counterpart. For quan-

titative evaluation, we use Reprojection Accuracy (RA)

that represents the percentage of matches under reprojec-

tion error of 1 and 5 pixels (RA-1, RA-5) along with the

total number of matches produced. In the follow-up fig-

ures that show image matching examples, the color of the

matches signifies the confidence of the model (red is more

confident), which typically correlates with the accuracy

of each match.

Synthetic Ortho-to-Ortho Dataset. We perform an

analysis of the robustness of the matching on a wide range

of illumination conditions on the Ortho-to-Ortho dataset.

To do so, we generated a test set by randomly sampling

locations from the same map used to create the training

pairs, and from a previously unseen map. Testing on the

unseen map is important to demonstrate that the model

did not overfit on a specific region and that it can general-

ize to unseen regions of the Lunar south pole. We refer to

the seen map as “180E” and the unseen as “0E”. The test

sets were generated following the procedure in Figure 2

resulting in approximately 2700 pairs for each map.

Results of matching accuracies over 28 combinations

of sun elevation and azimuth angle differences are shown

in Figure 4 (seen “180E”) and Figure 5 (unseen “0E”).
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LoFTR-fine outperforms the other baselines by a large

margin and is able to produce a large number of matches

with RA-1 (41.8% of 479 matches) even on the most dif-

ficult illumination condition of 180o azimuth and 3o el-

evation difference. On the other hand, the off-the-shelf

model starts struggling when azimuth difference is beyond

90o with RA-5 falling at or below 1.5%, and SIFT starts

failing at 60o of azimuth difference. Finally, Figure 8 il-

lustrates matching examples between frames of large sun

azimuth difference.

LRO-NAC Images. In this experiment we apply the

LoFTR-fine model, that was trained on the synthetic

Ortho-to-Ortho Lunar imagery, on pairs of real Lunar

Reconnaissance Orbiter (LRO) Narrow Angle Camera

(NAC) images captured at different sun azimuth angles.

Figure 9 shows matching examples and a mosaic created

from NAC images, demonstrating the ability of the fine-

tuned model to generalize from synthetic to real imagery

of the same domain. The images in the mosaic were reg-

istered with a simple blending function along the seams,

with the illumination differences between the registered

images easily noticeable.

Synthetic Perspective-to-Perspective Dataset. We test

the robustness of the trained LoFTR model in the pres-

ence of pose differences between perspective images along

with different illumination conditions. Two test sets were

generated, PerspA contains 460 pairs and follows the gen-

eration parameters of the training set, while PerspB con-

tains 507 pairs that are rendered with larger pose varia-

tion (yaw = 0o, 45o > pitch > 0o, 45o > roll > 0o). Note

that the model evaluated on PerspB is trained with the

smaller pose variations of up to 15o. We present quan-

titative results over 10 combinations of sun angle differ-

ences in Figure 6 and Figure 7 for the PerspA and Per-

spB test sets respectively. Similarly to the experiment on

the Ortho-to-Ortho dataset, the off-the-shelf model starts

failing when the azimuth difference is 90o, while LoFTR-

fine is able to learn an illumination invariant distribution

and have a much smoother degradation of performance

when the elevation and azimuth angle difference increases.

Examples of matches in the presence of both lighting and

attitude variations are shown in Figure 10.

Deep Feature Visualization. The rapid increase in com-

plexity of deep learning-based models, has made these

methods less interpretable10 as often it is difficult for a

user to explain why a model predicted a certain output. A

popular method for providing some insight into the repre-

sentation that a model has learned is to visualize features

from intermediate layers of the model.11 Since LoFTR

uses transformers to incorporate information from the en-

tire image and learn the features of individual pixels, it

is meaningful to visualize the attention weights of these

blocks. We provide a few examples in Figure 11.

Conclusion. We presented a study on learning illumi-

nation invariant features for the challenging domain of the

Lunar south pole. Our work involved generating synthetic

datasets suitable for training deep learning methods for

image matching, and demonstrated the efficacy of both

the datasets and the chosen image matching method on

robust registration. Our experimental evaluation showed

that deep learning models such as LoFTR are a viable

solution for vision-based applications in the planetary ex-

ploration domain including those under extreme illumi-

nation conditions such as the Moon.
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