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Abstract. The Artemis program advances towards

operations on the lunar surface, where precise surface lo-

calization is a driving need for safety and science. Using

the observable horizon as an image landmark allows for

estimating the photographer’s position. This work ana-

lyzes the application of Perspective-n-Point (PnP) algo-

rithms to this lunar localization problem. Batch simu-

lations using lunar topography display the accuracy and

drawbacks of these methods. Monte Carlo techniques show

the pipeline’s solutions as measurements provided to a

navigation filter. When filtered, these solutions have po-

sition errors of 50 meters or better, which is similar to or

better than the performance of other methods of surface

localization.

Introduction. Precise localization on the surface of

any solid body is critical to numerous aspects of surface

operations. For science, precise localization enables geo-

tagging of science observables and contextualizes result

interpretation. For human operations, precise localiza-

tion is required for crew safety, ensuring the crew is close

enough to the base or a rover to return in an emergency,

for efficient traverses, and for geotagging of science ex-

periments and sample collections performed by the crew.

In robotic science operations, localization is the first step

in effective path planning, which is crucial for achieving

mission goals and ensuring safe surface travel.

Radiometric tracking approaches for the Moon, such

as provided under LunaNet navigation services,1 similar

to the Global Positioning System (GPS) on Earth, are

promising to localize on the lunar surface. However, these

capabilities require significant near and long term invest-

ments and complex operations with an associated phased

deployment schedule. Additionally, depending on the size

and design of the satellite constellation, the coverage pro-

vided by such a system can be limited in terms of solu-

tion availability. Without sufficient infrastructure, there

is a pressing need for near-term, Size, Weight, Power, and

Cost (SWaP-C) constrained capabilities during the devel-

opment of these localization services.

This paper describes a potential, low SWaP-C ap-

proach for localization technology based on in-situ mea-

surements of the observable horizon using only a monoc-

ular camera with a moderate field-of-view (FOV), a sin-

gle board computer, and an Inertial Measurement Unit

(IMU).

Related Work. Lunar surface navigation has been iden-

tified as an area that requires further research and devel-

opment, especially with more and more crewed and un-

crewed missions to the Moon scheduled as part of the

Artemis program.2 Navigation using the visible horizon

of a planet or Moon has been demonstrated, as has nav-

igation on the surface of another celestial body. Still,

these have never been done in concert. Horizon-based

Optical Navigation (OpNav)3 flew successfully on the

Artemis 1 mission,4 demonstrating the ability to navigate

autonomously in cis-lunar space using monocular images.

Engineers at NASA’s Jet Propulsion Laboratory (JPL)

have been working on image-based navigation on the sur-

face of Mars for decades.5,6 Much of this work amounts to

Hazard Detection and Avoidance (HDA) and navigation

relative to a last known location.

Autonomous global navigation – estimating vehicle lat-

itude and longitude using on-board measurements with

no help from human operators – still needs to be demon-

strated on another celestial body. When accomplished,

it will almost certainly involve passive or active optical

sensors such as cameras or Light Detection and Rang-

ing (LiDAR). One technique that could perform au-

tonomous global navigation is the Stellar Positioning Sys-

tem (SPS)7–9 which is the modern equivalent of classical

maritime celestial navigation (i.e., using a sextant). One

can also use images or LiDAR scans of the local envi-

ronment to detect and identify craters, as in the case

of the LunarNav algorithm.10–12 Crater-based naviga-

tion using orbital images can make use of global crater

databases13,14 and simplifying assumptions about prob-

lem geometry that lends to the use of invariant theory

for crater identification.15 By contrast, when perform-

ing crater-based navigation on the lunar surface, one

must create a custom crater catalog for a particular mis-

sion, likely using orbital images or Digital Elevation Map

(DEM) data. Further, one is reduced to using more

heuristic methods of crater identification.

Another autonomous global navigation technique uses

the visible skyline as a navigation observable. Panoramic

images can be used to reconstruct a 360-degree skyline,

which is (in theory) unique to an observer’s position and

invariant to an observer’s heading direction. No analyt-

ical relationship allows for position to be deduced from

skyline measurements. However, a look-up table consist-

ing of many pre-rendered skylines can be used, and the

closest match gives a coarse estimate of an observer’s po-
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sition. This has been studied in the context of lunar16

and Martian17 exploration.

Any image-based navigation technique will be sensitive

to illumination conditions, and lighting at the lunar south

pole (the area of greatest interest to the Artemis program)

is highly unfavorable. Due to a phenomenon called the op-

position effect, wherein near-zero phase angle, particulate

media can increase in brightness and create illumination

conditions that obscure crater rims at the lunar poles.18

Inaccuracies in crater rim detection cascade into problems

with crater identification, which ultimately lead to pose

estimation errors. The same is true for issues measuring

the distant skyline and matching it to a database, which

will lead to localization errors.

Current Work. A method is presented for using the

lunar horizon in a single monocular image for navigation

relative to known maps of the lunar surface. This con-

trasts coarse position estimation techniques that require

an entire panoramic skyline. One benefit of this is that

an intelligent operator can choose a portion of the hori-

zon to image, which is well-lit and provides good position

observability – a mountain range in the distance provides

far more information about the observer’s position than

a flat plain. Further, requiring only a single image means

this analysis can be done with minimal change to mis-

sion operations. There is no need to plan and acquire

enough images to reconstruct a panorama. Alternatively,

observer localization can be done after a mission or sur-

face operation is concluded. A single image, correlated

with some activity (e.g., experiment, surface sample col-

lection), is enough for an analyst to deduce the location

of that activity after the fact.

Because the horizon tends to be a far-field observa-

tion, the required map resolution for comparisons is gen-

erally lower than that required for more near-field-focused

approaches like crater navigation. The Lunar Recon-

naissance Orbiter (LRO) Lunar Orbiter Laser Altime-

ter (LOLA) supplies topographical data that is generally

already sufficiently high enough resolution for horizon-

based navigation needs globally across the lunar sur-

face.19–21 These DEMs enable the generation of a known

three-dimensional (3D) horizon at any position on the

Moon.

Methodology. To solve the surface localization prob-

lem on the Moon with low SWaP-C hardware, we propose

a small system of a moderate FOV (20◦–50◦) camera, a

single board computer, and an IMU rigidly attached to

the camera. Notably, much of this hardware is already in-

cluded on robotic rovers and human space suits planned to

explore the lunar surface, indicating that the techniques

described in this paper could conceivably be implemented

without additional hardware.

This system’s concept-of-operations (ConOps) is de-

scribed in Fig. 1. Begin by assuming we have some rough

knowledge (on the order of 100 m, 1σ) of our location on

the surface.∗ Then, a user (whether robotic or human)

points the camera towards the lunar sky to capture a star

field image. This star field image is processed using lost-

in-space star identification algorithms (for examples see

Refs. [27–29]) to determine the orientation of the camera

at the time the image was captured. The user then slews

the camera towards a visible portion of the lunar horizon,

during which the angular rate information from the IMU

is integrated to maintain knowledge of the camera’s at-

titude. A well-exposed image of the horizon is captured.

This image is processed to extract the observed horizon

from the image, which is then matched with a predicted

horizon from a DEM. This observed and predicted hori-

zon pairing is used to solve a PnP problem for either the

relative location and attitude of the camera with respect

to the DEM reference frame or, more helpfully, just the

relative location of the camera with respect to the DEM

reference frame.

This position estimate is then fed to a navigation fil-

ter, such as an extended Kalman filter (EKF), as a mea-

surement update. The EKF uses the IMU-reported ac-

celeration to integrate the state until the next image is

captured. We now discuss each of these steps in more

detail.

Attitude Estimation. As previously mentioned, we rely

on existing algorithms to solve for the precise pointing

of the camera from a single image of a star field.27–29

As shown in Ref. [27], for moderate FOV cameras with

reasonable star centroiding performance, attitude knowl-

edge from a single image can approach better than five

arc seconds, 1σ. Additionally, reasonably sized, space-

grade IMUs can have stable bias and random walk char-

acteristics leading to minimal noise added through inte-

gration, on the order of 10-20 arc seconds assuming 10

seconds of integration time.30 Therefore, it is expected

that knowledge of the pointing of the camera for the hori-

zon image (after star field capture/processing and camera

slew) can be on the order of 20-30 arc seconds or about

0.006◦–0.008◦. This accuracy will be necessary, as dis-

cussed later.

Horizon Extraction. After handling the star field im-

age for attitude estimation, the user then captures a well-

exposed image where the horizon is visible. This horizon

image is then processed to extract the observed horizon

points (Pts) in the image. Generally, the horizon forms a

strong and easily distinguished feature in the image as

a crisp gradient where the Moon’s illuminated surface

abruptly ends in the darkness of space.

Determination of the pixels that correspond to the hori-

zon in the image proceeds is described in Refs. [31–34].

In summary, we begin by scanning in the illumination di-

rection projected onto the image plane (which is usually

nearly vertical in the image). We then find each scan’s

first high-intensity gradient from dark to light.† We then

∗This assumption can be met with the same hardware using
some “lost on the Moon” algorithms like those in Refs. [22–26].

†With real, noisy images, care needs to be taken that we
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Figure 1. Horizon matching pipeline concept-of-operations.

use subpixel detection methods to find the subpixel loca-

tion of the limb.31,35 Finally, we correct the effects of

distortion induced by the camera lens’s optics so that the

limb points represent a true gnomic projection from three

dimensions to two dimensions. This gives us a set of ob-

served, 2-dimensional (2D) horizon points in the image,

typically with an accuracy of around 0.1 pixel, 1σ.

Horizon Prediction. Given that we have an a priori

estimate of the location of the camera in the DEM ref-

erence frame‡, along with the estimate of the pointing of

the camera as discussed in the Attitude Estimation sub-

section, we have a full, six-degree-of-freedom (DOF) pose

(position and orientation) estimate between the Moon

fixed reference frame and the camera frame. We also have

a set of 2D, gnomically projected points corresponding

to the line of sight vectors in the image frame from the

Horizon Extraction subsection. Additionally, LRO’s lu-

nar orbiting laser altimeter (LOLA)19,20 has been used to

produce extensive global DEMs of the lunar surface20,21

which provide sufficient resolution for most surface-based

far-field horizon observations. Therefore, combining the a

priori pose knowledge of the camera, the observed horizon

directions in the camera frame, and the DEM of the lunar

surface where we expect the camera to be, we can predict

what the observable horizon should be to the camera.

We determine the 3D DEM points corresponding to

the horizon using the ray-tracing-based binary search al-

gorithm described in Refs. [32,33]. In summary, this looks

do not mistakenly detect a noise spike or even a star before
finding the horizon.

‡Again, recall that this is a rough location estimate, on the
order of hundreds of meters, 1σ

like:

1. For each observed horizon point, we define the

bounds of a binary search.

(a) The “upper” bound corresponds to a ray that

we guarantee will not strike the lunar surface.

This is determined by rotating the observed ray

from the image away from the Moon’s origin by

some angle, which accounts for potential errors

induced from the a priori pose knowledge.

(b) The “lower” bound corresponds to a ray that

we guarantee will strike the lunar surface. This

is determined by rotating the observed ray from

the image towards the Moon’s origin by some

angle, which accounts for potential errors in-

duced from the a priori pose knowledge.

2. Define a ray with a direction halfway between the

upper and lower bounds of the binary search.

3. Trace this ray through the DEM and determine

whether it intersects the surface.

(a) If the ray intersects the surface, define this ray

as the new “lower” bound.

(b) If the ray does not intersect the surface, define

this ray as the new “upper” bound.

4. Return to step 2 and proceed with the new “lower”

and “upper” bounds.
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5. Break when requested relative and absolute toler-

ances have been met. The DEM intersection loca-

tion by the final “lower” bound is interpreted as the

3D DEM horizon point.

Pose Estimation. Given a set of 2D image points, pi =

[ ui vi ]T , which correspond with 3D model points,

mi = [ xi yi zi ]T we want to determine the relative

pose which optimally minimizes the projective distance

between these associated points. This is known as the

PnP problem and is described mathematically as

argmin
(R,t)

∑
i

dproj(pi,mi). (1)

wherein dproj is the projective distance function between

image point pi and model point mi, R is the rotation

matrix that aligns the axes of the model frame and the

image frame, and t is the translation vector in the image

frame which aligns the origin of the model frame and the

image frame. We can define dproj according to

dproj(pi,mi) =

∥∥∥∥pi −K[ R t ]

[
mi

1

]∥∥∥∥ (2)

where ∥ • ∥ indicates the 2-norm of the vector and K is

the usual gnomic intrinsic camera matrix.

K =

[
kx α cx
0 ky cy

]
One method to solve the PnP problem is to directly

optimize over this non-linear cost function using any

standard non-linear optimization technique (Gradient De-

scent, Gauss-Newton, Levenberg-Marquardt, etc.). How-

ever, the optimization-based approach is a local method

that requires an initial position and attitude estimate.

This makes the direct non-linear optimization approach

sensitive to initialization and can result in inconsistent so-

lutions. Within the PnP problem, there is an additional

geometric structure, which prior works have exploited to

derive more accurate global methods that do not rely on

an initial pose. An example and the modern “standard”

method is the Efficient PnP (EPnP) algorithm.36 How-

ever, the field has seen advancements in recent years, re-

sulting in novel approaches like the SQPnP algorithm.37

This algorithm is not only an efficient global solver for the

PnP problem, but it also provides a guaranteed optimal

solution.

We assume we are solving for all the 6-DOF of the

pose in the previously mentioned algorithms. As will be

discussed later, the 6-DOF PnP problem is prone to ob-

servability issues when most of the observations are nearly

“coplanar” as with horizon points. The poor observability

is due to high correlations between the pitch/yaw of the

rotation matrix and vertical/lateral translation. However,

as discussed in the Attitude Estimation subsection, we as-

sume we have reasonably accurate knowledge of the cam-

era pointing when taking our horizon image. Therefore,

to use this strong a priori attitude knowledge, we also

develop an alternative solution to the PnP problem using

a translation-only direct linear transform (TDLT).38 The

details of this solver are described in Appendix: Direct

Linear Transform for Translation-Only Solutions. It suf-

fices to state that it solves for only the translation that

best aligns the camera frame origin with the model frame

origin, assuming that the camera frame and model frame

axes have already been aligned through a known rotation.

We provide a brief, qualitative summary of the different

PnP algorithms in Table 1.

Table 1. Properties of the three tested PnP algo-

rithms.

TDLT SQPnP EPnP

Relative Speed Medium Slow Fast

Supports Weighting Yes Yes No

Estimates t R, t R, t

Data Association. At this point in our solution, we

have an a priori 6-DOF pose estimate (utilizing the a

priori position estimate and the attitude estimate from

the Attitude Estimation) subsection, 3D predicted hori-

zon points from the Horizon Prediction subsection, and

2D observed gnomic image locations from the Horizon Ex-

traction subsection. It is easy to recognize we now have a

variant of the general model-to-image registration prob-

lem. With an image (taken by the robot or astronaut) and

a model (lunar DEM from an orbiter mission), we attempt

to “register” them (compute the relative pose between the

camera and the model). This general problem has been

extensively studied in computer vision and robotics, and

by taking this broad perspective for horizon-based local-

ization, we can take advantage of the advancements in

these fields over the past decades.

Our model features are comprised of 3D points of the

form m = [ x y z ]T . Our image features are com-

prised of 2D-pixel points of the form p = [ u v ]T .

With these features, the next step in the Model-to-Image

registration pipeline is to associate data between the im-

age features and model features.

In this case, we solve data association using our a priori

pose knowledge. With this prior pose, we can project the

estimated 3D model points into the image and associate

points using their projective distances.

The most common method to perform this association

is the Iterative Closest Point (ICP) algorithm. This form

of data association requires iteratively re-solving the rel-

ative pose, as the name suggests. At each iteration, we

associate each image point with its closest model point

according to their projective distance and re-solve, as-

suming these associations are correct. A downside of ICP

is that it is highly sensitive to initial conditions and is

prone to converging to local optima.

To overcome ICP’s sensitivity to initial conditions, we

propose using Graduated Non-Convexity (GNC).39 Like
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ICP, GNC is an iterative method that requires re-solving

the relative pose. GNC is an example of a “continua-

tion” method. Continuation methods are a broad class

of optimization techniques that attempt to solve prob-

lems with traditionally difficult cost landscapes (e.g., non-

linear, non-convex). The key idea of GNC is that we

first solve a “convexified” version of our problem and use

the solution to initialize the solving of progressively more

non-convex versions of the problem until we recover the

original. While GNC cannot provide any formal guaran-

tees on its ability to improve convergence, prior work has

found substantiative empirical evidence that GNC broad-

ens the basin of convergence of these difficult optimization

problems and allows the recovery of accurate solutions in

otherwise intractable optimization tasks.

We adapt GNC to perform data association as follows.

Let us define a matrix A ∈ RN×M where N is the num-

ber of horizon points detected in the image and M is the

number of horizon points estimated from the model. Let

Aij be proportional to the probability that image point

pi correctly associates to model point mj . Assuming we

have A we can solve a weighted version of the PnP prob-

lem:

argmin
(R,t)

∑
i,j

Aijdproj(pi,mj). (3)

When all elements of A are identical, we have convex-

ified the problem by removing the non-convexity induced

by data association. On the contrary, if we constrain each

row/column to, at most, a single non-zero value, we re-

cover the highly non-convex original problem. Further,

we can define a procedure for smoothly transitioning from

the convex to the non-convex case. We first compute a

weight matrix for all possible data associations according

to the weighting scheme, which has been derived from the

SoftPOSIT algorithm:40

Wij = γ exp−µ
(
dproj(pi,mj)

2 − α
)

(4)

where W is the weight matrix, γ = 1/
(
max(N,M) +

1
)
is a scale factor based on the number of points, α =

9.21σ2
px+1 defines the width of the weighting kernel based

on the noise model of detected horizon points (σ2
px), and

µ is the GNC “control” parameter that transitions from

the convex case (µ = 0) to the non-convex case (µ = 1).

An example of how the weights are computed for different

values of µ can be found in Fig. 2.

Once we have computed the weight matrix W, we use

it to derive the association matrix A. We do so by apply-

ing Sinkhorn’s method.41 This method transforms the

weights into pseudo-probabilities, enforces a soft one-to-

one assignment constraint, and enables us to handle out-

lier points (either image or model points that do not as-

sociate). We first augment the weight matrix with an

additional row and column initialized to γ. When these

“slack” elements converge to a large probability, it indi-

cates no good association between the two points. We

Figure 2. Example weights by projective distance

for varying control parameter µ.

then alternate between normalizing the non-slack rows

and non-slack columns. We do so until there is lit-

tle change in the matrix’s Frobenius norm. For addi-

tional discussion regarding the intuition behind how this

method enforces the soft one-to-one assignment, refer to

the SoftPOSIT paper.40 We can now summarize the GNC

method for data association as follows.

With feature points associated, we can compute the

relative pose, X ∈ SE(3), by solving the PnP problem

for which many algorithms have been proposed. Another

term used in literature for PnP problems with unknown

data association is the blind-PnP problem, which does

not necessarily assume that the 3D points are derived

from some model.

Implementation Details. In the previous subsections,

the steps of the horizon-based localization algorithm are

shown from a theoretical perspective. However, several

practical implementations are worthy of discussion. Al-

gorithm 1 shows the PnP iteration when using GNC. Two

criteria are implemented for the algorithm to accept an

update step to avoid allowing degenerate configurations

to result in algorithm divergence. If a step is rejected,

the estimated pose is not changed, but the iteration of µ

continues.

The first acceptance check is based on a trust region.

The user supplies a trust region to the algorithm with

a covariance on the 6-DOF pose and a χ2 threshold. At

each iteration of the algorithm, the difference between the

new and previous estimated pose is evaluated by comput-

ing the Mahalanobis distance with the supplied covari-

ance. This distance is compared to the critical value de-

fined by the χ2 threshold. For large enough updates, this

step is rejected to avoid entering a degenerate configura-

tion.

The second acceptance check is based on minimizing

the projective distance. After computing the new pose

estimate, the weighted projective distance is re-evaluated

using the new pose but the exact correspondence. The
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updated pose should result in a better solution assuming

a fixed weighting. The pipeline rejects the pose solution

when the projection from the estimated pose does not de-

crease the error between the estimated and actual horizon

points.

Algorithm 1 Graduate Non-Convexity PnP

Initialize µ

Initialize pose (R, t) from a priori estimate

while µ < µfinal do

Project the model points onto the image using the

current pose estimate

Compute the weight matrix W(µ) using Eq. 4

Compute the correspondence matrix A using

Sinkhorn’s method41

Solve for then new pose using weighted PnP using

any weighted method from the Pose Estimation sub-

section

if Covariance and Projection checks passed then

Save estimated pose as updated pose

end if

µ← µ+∆µ

end while

return Estimated pose (R, t)

Typically, the first iteration of the GNC algorithm

should weigh all associations equally. However, practi-

cally doing so often causes the algorithm to diverge and

reject the fact that we have some a priori knowledge of

the pose. Minimizing the projective distances under the

equal weight configuration is often achieved by moving

the camera so all 3D points project into the center of the

image, which is usually far from the true pose solution.

It is nearly impossible to find a suitable solution from

configurations like this. We avoid this scenario by initial-

izing µ to a non-zero value. We have found that values

of 10−3 or 10−4 work best from initial testing. Theoreti-

cally, we should also continue to iterate until µ = 1, when

we have recovered the fully non-convex problem. How-

ever, we have found that beyond a value of µ = 0.5, the

algorithm makes little additional progress. Therefore, we

usually set the algorithm to terminate after µ surpasses

0.5.

Results. Multiple tests were run to investigate the

performance of the pipeline. First, a single pipeline run

gives an example of a point solution. Next, for the three

PnP algorithms described (EPnP, TDLT, and SQPnP),

many runs are shown to give an idea of the error prop-

erties of the estimation. Without loss of generality, in

these tests, perturbations are performed in the true cam-

era frame x and z-directions with conventions shown in

Fig. 3.

Single Point Solution with Image. We first demon-

strate the performance of the entire pipeline with image

processing and DEM-based ray tracing. This test con-

siders a pre-rendered synthetic image of the lunar hori-

Figure 3. PnP pose estimation. Frame C is the

definition of the canonical camera frame. Frame C̃

represents the a priori camera frame.

zon based on a lunar DEM at some known pose. This

image is ingested, and the 2D horizon points in the im-

age are extracted. Next, this known pose is perturbed in

the position component but not the attitude component

(representing having a rough a priori position estimate

but an accurate a priori attitude estimate from a star

tracker). The observer is then placed in the DEM at this

perturbed pose representing the a priori pose estimate.

The observed 3D DEM points corresponding to the visible

horizon at this a priori pose are extracted via the tech-

niques described in the Horizon Prediction subsection.

When extracting the 3D horizon points from the DEM,

the horizontal camera FOV is increased by a factor of

1.25 (compared to the actual camera FOV) for increased

robustness. The 2D-3D correspondence problem is solved

with GNC as described in the Data Association subsec-

tion, and the final pose estimate is solved with SQPnP.

The pose solution is then used to bootstrap a subsequent

pipeline run wherein the solved-for pose is employed as

the new a priori pose estimate.

In the presented example, 20 such iterations of the en-

tire pipeline are conducted with the same 2D image input

(but updated 3D DEM points per iteration based on up-

dated a priori pose estimates). The a priori position error

before the first run is approximately 400 m, and the final

position error after the last run is approximately 73 m.

Fig. 4 depicts the ingested image of the horizon superim-

posed by the extracted 2D horizon points in red (denoted

“IMG PTS”) and the 3D horizon points observed at the

a priori pose in the DEM projected to the image plane in

blue (denoted “DEM PTS”) for the first iteration of the

pipeline. While much of the red and blue lines overlap, a

noticeable divergence is visible in the left part of the im-

age corresponding to the mountain slope. The blue line

extends on either side past the image due to the 1.25x

horizontal FOV increase mentioned earlier. Fig. 5 depicts

the same image with the 2D image points and 3D DEM
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points projected to the image plane superimposed for the

twentieth iteration of the pipeline. Here, the red and blue

lines overlap almost perfectly, indicating convergence of

the final pose solution closer to the true pose.

Figure 4. Synthetic image with 2D image points

and projected 3D DEM points for the 1st iteration

Figure 5. Synthetic image with 2D image points

and projected 3D DEM points for the 20th iteration

Single Point Solution without Image. Having shown

that the full pipeline works, including image processing,

we can now devise a test that skips the expensive step

of rendering simulated images. We begin this section by

describing a single instance of this test to provide de-

tails. The test can then be repeated across a wide range

of conditions and perturbations to gain insight into the

algorithm’s performance.

First, we place an observer with a true pose on the

lunar surface. We then use the binary search algorithm

described in the Horizon Prediction subsection (using the

true pose) to determine the observed image points. The

horizon profile of the observed image points is shown in

Fig. 6 in solid black. Next, we perturb the true position

in the true camera frame to form the a priori estimate

of the pose. Note that we do not perturb the orientation

as we assume this is known sufficiently, as discussed in

the Attitude Estimation subsection. This results in the

Figure 6. Image horizon, a priori horizon, and pro-

jected solved horizon corresponding to positions in

Fig. 7.

dashed red line in Fig. 6. Finally, we provide these in-

puts to the GNC/PnP algorithms described in the Pose

Estimation and Data Association subsections, resulting

in a new pose estimate which produces the new projec-

tion shown as the green dashed line in Fig. 6. As seen in

Fig. 6, the reprojected horizon more closely matches the

true horizon, but not exactly, due in part to the correla-

tion between the rotation estimates and the translation

estimates. As shown in Fig. 7, the solved pose is closer to

the true pose.

Batch Analysis Results. Utilizing the previous steps

enables us to quickly test over different lunar positions

and perturbations to understand the convergence statis-

tics of the pose solutions. A set of locations between

25◦ − 26◦ latitude and 30◦ − 31◦ longitude on the lunar

surface were chosen. Then, these locations were each per-

turbed away from the actual position to represent errors

in the a priori pose. The horizon locations were extracted

from a section of the DEM with a resolution of 256 pixels

per degree, equivalent to 1̃18 m in latitude.42

Figure 8 shows an example of the EPnP position esti-

mation errors for 2500 pipeline runs, displaying the vast

differences in convergence properties based on location.

Also, errors are significant in all DOFs with only a pertur-

bation in the x-direction. These errors represent a flaw in

the geometry of the PnP problem itself; there is inherent

unobservability between translation and rotation when all

the observed correspondences are nearly co-planar, as for

horizon measurements. This fact led to the development

of the translation-only PnP solution TDLT, where the

rotation is assumed to be well-known and thus does not

obscure the translation solutions.
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Figure 7. Solved PnP position as compared to the

true (original) and a priori (perturbed) positions.

Figure 8. Position and rotation estimation er-

rors for EPnP x-direction perturbation. The black

line represents the average of the runs. Positions

(m) are defined in the camera frame, and rotations

are defined as rotations (deg) around the estimated

camera frame axes.

Figure 9. Coupling of estimation errors of a batch

of SQPnP over a ± 500(m) perturbation in the x-

direction.

The contour plots in Fig. 10 show the error distribu-

tions for all translation directions in the camera frame.

The error along the z-direction, along the camera bore-

sight, is the largest, consistent with the knowledge that

range information is the least observable from single,

monocular images. The odd tails that branch out from

the main convergence area are considered failed conver-

gences that still pass the checks implemented in the EPnP

algorithm.

Figure 9 shows an example of the SQPnP position

estimation errors for the same 2500 pipeline runs used

with the EPnP solutions. These error contours are less

tailed and more elliptically distributed around zero. The

SQPnP problem solves a quadratic optimization problem,

and sometimes, it can fail to converge to a true globally

optimal solution, so the elongated blobs are thought to

be failed pose estimates converged to another local opti-

mum. The errors are within a similar order of magnitude

to those of EPnP.

Figure 11 shows an example of the TDLT position es-

timation errors for the same 2500 pipeline runs demon-

strated with EPnP. Recall that the relative orientation

between actual and estimated frames is assumed to be

known for this algorithm. Convergence is an order of

magnitude less than the EPnP and SQPnP. This is due to

the removed estimation of the orientation, where, in other

PnP algorithms, errors in the estimated rotation seed er-

rors in translation, and vice versa. Ultimately, the TDLT

is a promising solution if an accurate a priori orientation

can be integrated from a star field image, as discussed in

the Attitude Estimation subsection.

From varying locations and perturbations shown for
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Figure 10. Coupling of estimation errors of a batch

of EPnP over a ± 500(m) perturbation in the x-

direction.

Figure 11. Coupling of estimation errors of a batch

of TDLT over a ± 500(m) perturbation in the x-

direction.

the EPnP algorithm in Fig. 8, statistics for the correlation

between estimation errors were generated. The EPnP re-

sults were used because of their efficiency in a real-time

hardware application. The overlayed heatmap in Fig. 12

shows the highly correlated behaviors between significant

rotation and translation errors. The upper triangular ele-

ments are correlation coefficients, and the main diagonal

represents the translation and rotation estimation error

standard deviations. Terms are correlated based on phys-

ical unobservability in the camera frame. For example,

the x-translation and the y-rotation have a high negative

correlation. This represents the unobservability of yaw-

ing versus translating side to side in the camera frame. A

similar unobservability occurs with the y-translation and

the x-rotation, where the solution cannot differ between

pitching the camera and moving the camera up and down.

It is significant to see that the standard deviations for the

position estimations are below 100 m and around 1◦ for

orientation.

In comparison, we generated the same heatmap but for

the TDLT dataset in Fig. 13. In this case, since we do not

estimate rotation, the covariance/correlation coefficients

are only 3×3. Notably, the standard deviations of the po-

sition components are significantly smaller (by an order of

magnitude), which aligns with an intuitive understanding

that by limiting the parameters we estimate, the estima-

tor can put more of the information available into these

parameters. This, in combination with the high correla-

tion in the fully coupled 6-DOF pose estimates, demon-

strates the benefits of having an accurate, independent

attitude estimate for the horizon image as discussed in

the Attitude Estimation subsection.

Algorithm Timing. We summarize the timing results

from the three PnP solution methods in Tab. 2.§ TDLT

and EPnP run the pipeline the fastest. SQPnP fails to

converge, but when it does, it produces more accurate re-

sults than EPnP. This gives insight into which algorithm

to choose for real-time operation. Trials were performed

on an M3 Macbook Pro with 16GB RAM, with portions

of the algorithms written in Python. These numbers are

meant for relative comparison only. Based on previous

experience, the authors expect that these runtimes will

still be reasonable (though slower) on available embed-

ded hardware for space applications.

Navigation Filter Results. Though the point solutions

are of a similar order of magnitude as other localization

methods, the true power of this pipeline is that it can

inform a navigation filter to predict position in real time.

The advantage of having a navigation filter running in

parallel is that it will use a well-studied method for fusing

measurements from different epochs and even different

§Note that these run times are for the PnP solution only.
They do not account for the image processing. From other test-
ing, extraction of limb points from monocular images can be ac-
complished in a few seconds on representative space-grade pro-
cessors even without field programmable gate array (FPGA)
acceleration.
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Table 2. Mean and standard deviation runtime for

100 runs of the horizon processing pipeline (exclud-

ing image processing).

EPnP SQPnP TDLT

Mean (s) 0.667 8.11 1.04

Std. Dev. (s) 0.105 0.875 0.0477

Failed Runs 0% 30% 0%

Figure 14. Image output from the GIANT ray-

tracer.

instruments. Therefore, the overall errors can be reduced

significantly using a sequential estimation framework.

A simplistic EKF formulation can be derived if Gaus-

sian errors are assumed.¶ The position standard devia-

tion values, from the diagonal of Fig. 12, represent the

measurement covariance matrix R.‖ A zero-mean, nor-

mally distributed position and velocity state are gener-

ated using the same standard deviation values to initialize

a random state.

At the EKF update step, the current estimate of the po-

sition is added to the position output of the pipeline. This

lets the current estimate of the position render the topo-

graphic points, and the images are generated along the

truth trajectory to give the image horizon points. Fig. 14

shows an example of a simulated image.

¶We note that the error statistics discussed in the Batch
Analysis Results subsection are obviously non-Gaussian. This
subsection represents preliminary investigation of fusing mul-
tiple of these measurements together in time, therefore, for the
time being the authors believe the Gaussian assumption to be
reasonable.

‖Much better performance could be had using the TDLT
solutions; however, given the non-Gaussian structure of the
observables we chose the more poorly performing case for this
analysis.

Two dynamical approaches were taken to validate the

filter. First, a constant velocity approach of a significant

landmark is investigated; this application is akin to an

autonomous or Earth-controlled rover driving toward a

desired target. The second method is an in-place 360◦

rotation, which applies to an astronaut taking multiple

pictures of the horizon around them. For the first ap-

proach, an Extended Kalman Filter (EKF) with constant

velocity dynamics propagates a surface transversal toward

an object of interest. Dynamics are simulated with a state

vector of x = (x, y, z, ẋ, ẏ, ż)T .∗∗ The measurements are

the position updates in the Moon Centered Moon Fixed

Frame (MCMF) that are output after image processing

of ray-traced images generated for the trajectory. Fig-

ures 15-16 show the post-update position residuals for po-

sition estimation in the camera frame for constant trans-

lation dynamics and constant rotation respectively.

The error profile follows the standard funnel shape for

idealized EKF residuals, showing the decreasing estima-

tion error as time progresses. A significant structural dif-

ference can be seen from the thicker funnels in Fig. 15

compared to the thinner funnels in Fig. 16. This rep-

resents the accelerated decrease in estimation error when

the measurements are obtained from multiple panning, or

yaw, angles. This could also result from not moving the

observer’s position while taking images.

These residuals show the 3σ bounds, where most er-

rors should lie. Using Monte Carlo techniques, 1000 runs

were performed to analyze the large-scale statistics. The

covariance bounds are calculated analytically within the

EKF, and the statistics of every run in the Monte Carlo

are used. The agreement between the 3σ Monte Carlo

error bounds and the analytical filter error bounds is

promising. There is a slight difference that could be due

to not enough runs representing the population or the

pipeline’s non-Gaussian error profile. There are many

potential improvements to this filter, but this is a prelim-

inary implementation to show the promise of estimating

errors over time with a sequential filter.

Potential Hardware Design. The hardware re-

quirements of a camera and processing card to imple-

ment this algorithm on a robotic rover or spacesuit are

already standard on most space missions. Digital body

cameras are used on Extravehicular Activities (EVAs) to

ensure astronauts’ safe maneuvers and document their ac-

tivities at all times. Since a lunar camera will likely be

designed for manual and stand-alone operation, it is un-

likely (though possible) that any of these cameras could

be used for localization. Additionally, the available com-

putational resources on general-purpose processors may

be insufficient for the numerous algorithms described in

this paper. Therefore, for the purposes of this paper, we

consider a stand-alone unit. This section will explore op-

tions for this system’s processor board, camera, IMU, and

∗∗At this point, we do not assume we are integrating ac-
celerometer data and that the user is moving with constant
velocity.

Space Imaging Workshop. Atlanta, GA.

7-9 October 2024

11



Figure 15. EKF x, y, z post-update position estimation residuals over one minute with observations every

2 seconds. 1000 runs of the filter are shown in blue lines contained within the analytic 1-3σ bounds.

The measurements come from constant velocity dynamics.
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Figure 16. EKF x, y, z post-update position estimation residuals over one minute with observations every

2 seconds. 1000 runs of the filter are shown in blue lines contained within the analytic 1-3σ bounds.

The measurements come from constant rotation dynamics.
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lens.

The main concern is the computational resources avail-

able, where the power and time expenses are linked to

the accuracy of any solution due to iterative methods

and image size. The selection of development boards

is driven by direct camera interfaces and enough RAM

to store a DEM. Many development boards exist for use

with external cameras via USB or ribbon cables. Low-

cost boards include the PC/104 family, NVIDIA Jetson

Nano, and Raspberry Pi Compute Module 4 (CM4).43–45

Additionally, radiation-tolerant processors are of interest,

such as the SpaceCube 3 Mini-Z.46 The main outlier is the

PC/104 family, a standard of embedded modules that can

be stacked together to form computers. The chosen board

must also have enough RAM to store the extensive DEM

for a lunar region of interest.

An imaging sensor must be chosen to interface with

the computation module. For the analysis shown in

this paper, a sensor size of 1024 × 1024 pixels was used

with a FOV of 30◦. Star tracker cameras are usually

monochrome Complementary Metal-Oxide Semiconduc-

tor (CMOS) sensors with locked optics focused at infin-

ity, which may be satisfactory for the horizon. The main

concern is obtaining sufficient dynamic range to not over-

expose the illuminated objects in the foreground. If a

Charge Coupled Device (CCD) were used for the lunar

surface, it could lead to pixel overflow for highly exposed

portions of the lunar surface compared to the darkness

above the horizon. Therefore, a CMOS sensor is a likely

candidate.

Three sensors were chosen for comparison in Table 3,

and two of them have been investigated for their validity

for use as star-trackers and OpNav cameras in a survey.47

The Raspberry Pi High-Quality Camera is a low-cost op-

tion, likely optimal for prototyping before making a flight

camera. Two lenses are compared in Table 4, and their

comparison is analyzed further in a survey of low-cost star

tracker designs.47 The C-mount lens is compatible with

all the sensors in Table 3.

Table 3. Comparison of IDS UI-3180CP-M-GL

R2, Ximena MQ013MG-E2, and Raspberry Pi HQ

cameras.48–50

Feature IDS Ximena RPi HQ

Sensor Type CMOS CMOS CMOS

Resolution 18.1 MP 13 MP 12.3 MP

Interface USB 3.0 USB 3.0 CSI-2

Pixel Size 4.88 µm 3.45 µm 1.55 µm
Cost ($) 1200 150 50

Three computer modules are compared in Tables 5-

7. First, the Nvidia Jetson Nano is a small development

board with discrete graphics that are specialized for com-

puter vision processing; it can interface with USB cam-

eras and has CSI ribbon cable ports for other cameras.

Next, the Raspberry Pi CM4 is a version of the Rasp-

berry Pi without peripherals attached. Therefore, a sepa-

Table 4. Comparison of Fujinon HF12.5HA-1B

and Fujinon HF35HA-1B lenses.51

Feature 12.5HA 35HA

Focal Length 12.5mm 35mm

Max Aperture f/1.6 f/1.6

Mount C-mount C-mount

rate board is needed to break out specific interfaces, such

as the camera and USB interfaces. Next, the PC/104

family of boards is a stackable development board with

the potential for substantial computational resources but

trades off with its size and power use.

Table 5. Hardware specifications of NVIDIA Jet-

son Nano.

Spec. NVIDIA Jetson Nano

CPU 4-core ARM @ 1.43 GHz

RAM 4 GB LPDDR4

GPU 128-core Maxwell

Storage microSD (up to 512 GB)

Power 5W - 15W

Cost ($) 250

Table 6. Hardware specifications of Raspberry Pi

CM4.

Spec. Raspberry Pi CM4

CPU BCM2711 Cortex-A72 @ 1.5 GHz

RAM 1-8 GB LPDDR4-3200

GPU VideoCore VI

Storage eMMC up to 32 GB

Power 3W - 7W

Cost ($) 35 - 80

Ultimately, a Raspberry Pi implementation is favorable

for a preliminary prototyping application with a minimum

budget. However, something like the NavCube 3.0 Mini-

Z is more likely for actual implementation. These boards

are highly documented and have many built-in libraries.

The CM4 itself has a smaller package, is less power-

hungry, and is cheaper than its competitors. The Rasp-

berry Pi CM4 and the Raspberry Pi HQ Camera are rec-

ommended in conjunction with the Fujinon HF12.5HA-

1B lens to test the validity of running the pipeline in

real-time on Earth at the least cost to the user. A shorter

focal length is preferable to obtain the most expansive

FOV of the horizon as possible.

One drawback of the CM4 is that it requires a separate

carrier board. An open-source carrier board was designed

to connect a camera and power supply to the Raspberry

Pi CM4. This board breaks out I2C for a separate IMU

and allows for Ethernet connectivity to simplify network-

ing when prototyping. Fig. 17 shows a rendering of a cir-

cuit board designed to interface the CM4 with a camera

sensor.
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Table 7. Hardware specifications of PC104 Family.

Spec. PC104 Family

CPU up to Intel Core i7

RAM Up to 32 GB DDR4

GPU Varies (integrated or discrete)

Storage SSD or HDD

Power 5W - 47W

Cost ($) 200 - 300

Table 8. Hardware specifications of the SpaceCube

Mini-Z.

Spec. SpaceCub Mini-Z

CPU ARM Cortex-A9

RAM Up to 1GB DDR3

GPU N/A

Storage 4GB NAND Flash

Power 1.6W - 3.6W

Cost ($) Unpublished

Figure 17. Rendering of CM4 carrier board.

Figure 18. PCB layout, vias, for top and bottom

layers.
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Conclusion and Future Work. The software

pipeline proposed in this paper for lunar surface local-

ization using horizon images and topographical maps is

promising for positioning astronauts and robotic systems

on the lunar surface with 10s of meters of accuracy. Large-

scale statistics inform potential measurement models for

implementing the PnP problem parallel to a navigation

filter. Most pose output errors are subject to unobserv-

able products of the projective geometry of the PnP prob-

lem. With the insufficient depth information cameras pro-

vide, positioning errors are the largest along the camera

boresight direction. Further improvements in position-

ing capability are shown with EKF implementations with

simple dynamics to simulate imaging while translating

and rotating on the surface.

Hardware solutions for a low-cost implementation are

discussed, with the Raspberry Pi CM4 as a selected pro-

cessor. A potential carrier board was designed to decrease

package size compared to other boards.

Potential limitations of this method include the signif-

icant weight on the accuracy of the a priori position and

orientation information; this is not a “lost-on-the-Moon”

solution. The methods to obtain an initial position within

the PnP pipeline’s convergence properties are nontrivial

and subject to other drawbacks but do exist. Addition-

ally, this technique still does rely on favorable illumination

conditions which may not be achievable in all situations.

There are many opportunities for future work on this

topic. First, a more realistic navigation filter implemen-

tation should be investigated, wherein a simulated IMU

is used to provide acceleration and angular velocity data.

The PnP algorithm could be further constrained to only

query surface points for the solution. Also, a relationship

between convergence and location should be determined

to increase fidelity within craters or on top of hills. A

proper hardware prototype could be made and tested on

a rocky, well-mapped part of Earth. Overall, a hardware

and software solution described in this paper would allow

for safe robotic and human lunar surface operations be-

fore more extensive infrastructure is constructed around

the Moon.
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Appendix: Direct Linear Transform for Trans-

lation-Only Solutions. The Direct Linear Transform

(DLT) is a method for quickly computing the least squares

solution for the linear system that best projects a set of

3D points into a 2D plane, given a set of correspondences.

For this work, a novel variant of DLT called the

translation-only DLT is derived. In this problem, only

the translation vector t is estimated between the world

coordinate system and the camera coordinate system, as-

suming the camera matrix and rotation are already given.

As a further refinement of this method, by iteratively re-

weighting the weight matrix by the pixel error to repro-

jection error Jacobian, the statistically optimal solution

is converged upon rather than the least squares solution.

We begin by recasting our problem in the form of the

DLT problem

yk ∝ Axk

where yk ∈ R3 are homogeneous coordinates, xk ∈ R4

are homogeneous coordinates, and A ∈ R3×4 is the pro-

jection matrix. Redefine K to work with homogeneous

coordinates

K′ =

 kx α cx
0 ky cy
0 0 1


and redefine pi and mi to be

p′
i =

 ui
vi
wi



m′
i =


xi
yi
zi
1


We now have a proportional projection of

p′
i ∝ K′ [ I3×3 −t

]
m′

i.

To simplify, define projection matrix D =

K′ [ I3×3 −t
]
which is 3 × 4 and can be described

according to the rows of the matrix using

D =

 dT
1

dT
2

dT
3

 .

Now, following the usual DLT steps,65 we can remove

the proportionality by enforcing wi = 1 in p′
i by dividing

through by the third row of the right hand side giving

p′
i =

Dm′
i

dT
3 m

′
i

This results in a system of two equations which we can

rearrange to get[
kx α −ai aizi − αyi − kxxi
0 ky −bi bizi − kyyi

] [
t

1

]
= 02×1

where ai = ui − cx and bi = vi − cy are defined for

convenience. Using n observations with these equations

give a system of 2n equations with only 3 unknowns. We

can choose to solve the equations for the null space of the

matrix using SVD as is typically done for DLT, enforcing

the constraint that the scale of the vector much be such

that the fourth component is 1. Alternatively we can

rearrange to solve a 2n × 3 least squares problem. It is

trivial to back out the estimate for t in either case.
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Weighted DLT. At this point, we have an unweighted

solution; however, we would like a weighted solution. Fol-

lowing the procedure in Ref. [64], we can add weights for

each observation by left-multiplying by the weight matrix

for each observation (nominally computed according to

the Data Association subsection) using

WiMi

[
t

1

]
= 02×1

where Wi is the 2× 2 weight matrix for the ith observa-

tion and Mi is the coefficient matrix from the system of

equations.
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