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Abstract. We present a novel, fast and robust 
descriptor-based feature detection and matching 
algorithm called Simultaneous Orientation and Scale   
Estimator (SOSE). The primary innovation in this novel 
approach is in efficiency of scale estimation. Unlike other 
descriptor approaches, which rely on image pyramids or 
convolutions with banks of scale-dependent kernels to 
estimate a feature scale, SOSE estimates feature scale 
and orientation simultaneously from the image at its 
native scale. This novel approach has significant benefits 
for hardware implementation both because of low 
computational cost and a dramatic reduction in random 
data access introduced by the pyramid scheme. 

 
Introduction. Since David Lowe published his 

ground-breaking paper on the Scale-Invariant Feature 
Transform (SIFT)[1],  descriptor-based feature matching 
has become a standard in computer vision and beyond. 
SIFT leverages earlier work in scale-space theory [5,6] to 
define scale-stable key points in an image as extrema in 
a representation of the image formed by convolution with 
a bank of difference of Gaussian kernels separated by a 
fixed scale factor.  Extrema in this Difference of 
Gaussian (DoG) space approximate extrema of the scale-
normalized Laplacian of Gaussian, which was previously 
shown [6,7] to produce scale-invariant keypoints. Since 
Lowe’s work, many descriptor-based feature recognition 
algorithms have been produced. These include 
computational simplifications to SIFT, such as SURF [4], 
novel types of descriptors (ORB [8]) and modifications 
to the scale-space formalism (KAZE [9]), as well as 
many others.  

 
A common drawback of descriptor-based approaches 

for efficient hardware implementation is that they use 
image pyramids or banks of image convolutions to model 
a scale-space representation. Random data access in the 
process of exhaustive search in scale-space is not 
amenable to parallelization or FPGA implementation. 
However, if the scale-space representation scheme is 
simplified, these approaches typically suffer from poorer 
performance in scale-invariance.  

 
In this paper, we propose a novel approach that can 

estimate feature scale and orientation in a single image 
layer, which means the detailed scale representation, 
which is essential for good performance of most other 
algorithms, becomes unnecessary. 

 
Approach. In this paper we will mainly focus on the 

efficiency improvement by eliminating the need for 
multi-level data layers and most of the random memory 

access operations in key point scale and orientation 
estimation. We find that the proposed method not only 
accomplishes this but also addresses issues caused by 
imprecise feature localization inherent in approaches that 
perform detection in scale-space whenever coarse scales 
are use.    

 
Rosin [3] proposed the notion of orientation for an 

image patch in terms of its first order moments. He 
defines the moments of a patch as: 

 
𝑚!" = ∑ 𝑥"𝑦!𝐼(𝑥, 𝑦)#,%                  [1] 

  
The Intensity Centroid (IC), analogous to an intensity-
derived center of mass, of the patch is given by  

𝐼𝐶 = 	 (	𝑚&'/𝑚&&, 𝑚'&/𝑚&&) 
and the natural orientation for the patch is given by the 
angle between the patch center and the IC  

𝜃 = 𝑎𝑡𝑎𝑛2(	𝑚!", 𝑚"!)                      [2] 
Although the IC gives the most accurate orientation 

estimate, it is not always stable spatially.  Therefore, 
identifying a moment where the orientation is relatively 
stable spatially and radially will lead to a stable and 
accurate orientation estimate.  

 
We define the orientation stability measure (M1) at P(x, 

y) as 
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3< 𝑡1 (𝑥* + 𝑦*) < 𝑟*[3] [1] 

Since M1(r) is close to zero, the orientation is locally 
approximated by a constant. Hence the orientation of a 
patch is stable spatially within a radius r of the patch 
center. For example, if P is moved slightly, dP(dx, dy), 
the new orientation is then 

 𝜃+ = 	𝜃 +	
𝜕𝜃
𝜕𝑥 𝑑𝑥 +

𝜕𝜃
𝜕𝑦 𝑑𝑦 ≈ 𝜃 

[2] 

We define another metric  to enforce radial stability in 
IC: 

𝑀#(𝑟) = 	𝑡𝑎𝑛.𝜃(𝑟) − 𝜃(𝑟 + 𝑑𝑟)2 < 𝑡#.	         [4] 
Then we define the scale S at point P as the radius r 

when M1 and M2 are smaller than some chosen 
thresholds.     

   
  Computationally, the process described is very simple 
and does not involve any image pyramids or scale-
dependent banks of convolutional kernels. It is also easy 
to implement in parallel, a critical need for   hardware 
implementations. Further, because the scale and 
orientation are determined where they are most spatially 
and radially stable, the approach reduces feature 
localization error and improves sensitivity. We have 
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named this approach Simultaneous Orientation and scale 
Estimator (SOSE). 
 
Note that the core of SOSE is neither intrinsically a 
feature detector nor a feature descriptor algorithm. 
Instead, it provides efficient scale and orientation 
estimates to any detector with repeatability over scale, 
rotation and other relevant image transformations. We 
currently use Harris corner detection as the feature 
selection algorithm and a descriptor similar to SURF 
described below.  
 
Performance evaluation 
In order to test the effectiveness of SOSE, we scaled 
down a test image (1024 by 1024pixels) by scale at 0.9, 
0.8, 0.7, 0.6. Then we run the SOSE estimator between 
the original image and scaled down image. The figure 3 
shows the linear regression analysis of feature scale 
between original image and scaled down image and the 
slopes of the regressions for scale = 0.9, 0.8, 0.7, and 0.6. 
are 0.863, 0.772, 0.75 and 0.724 and coefficient of 
determination (R2) are 0.8697, 0.8589, 0.7320 and 
0.6108 respectively. However, SOSE stops working 
effectively when the scale is less than 0.6 , likely due to 
insufficient support for the orientation estimate in the 
down-sampled image. In general, SOSE is sufficient to 
cover the scale range for many real-world applications. 
In extreme case, we could employ a simplified pyramid 
scheme to extend the scale invariance beyond 0.6.  
 

 
Figure 1:  SOSE works when the scale is greater or equal to 
0.6. 

We evaluated SOSE against four scenarios:  synthetic in-
plane rotation between 0 to 360 degrees, off-nadir 
rotation from 0 to 45 degrees, and changes in image 
image illumination.   

 

Figure 2: The test data set for evaluating the SOSE and other 
algorithms. 

We also ran SIFT, AKAZE, SURF, and Brisk on the 
data sets.  To make an apples-to-apples comparison, we 
limited the number of features for each matcher to the 
best 500. Among these listed algorithms, AKAZE had the 
best performance. SOSE fluctuates between the 
performance of  SIFT and BRISK due to quantization in 
the orientation estimate. When quantization introduces 
small errors, SOSE outperforms SIFT, and when they are 
large, SIFT does better. 

 

 
Figure 3: The image rotation vs the recall. 

 
Figure 4: The Off nadir pointing vs recall.  SOSE. 

We also compared the performance under different 
lighting conditions. The synthetic images were rended 
with sun angle between 5 to 90 degrees with 5 degree 
intervals.  We run the matchers between the one with 45 
sun elevation with rest of images.  
 

 
Figure 5: The performance comparison between SOSE and 
other matchers under different illumination condition. 

Overall SOSE’s performance is comparable to other 
SOA matchers.  However, the goal of SOSE im 
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implementation in firmware without loss of performance.   
This analysis shows that it meets that goal. 
 
Even in software implementation, SOSE is among the 
faster match algorithms of those studies.  Its speed is very 
close to SURF and AKAZE and about 9 times faster than 
SIFT. 

 
Figure 6: The SOSE is one pf the fastest algorithms. 

Conclusions    
We presented a novel approach for feature scale and 

orientation estimation which we call SOSE. Although its 
performance is slightly worse on average than the classic 
algorithms such as SIFT, that performance loss is mainly 
due to the choice of quantization in descriptor space to 
enhance efficiency. Critically, SOSE avoids the need for 
a pyramid scheme for scale estimation. As a result, it is 
both faster and requires less data access than other 
approaches. Hence, it is particularly suited for 
implementation in FPGA or other embedded systems. 
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