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Abstract. Asteroid exploration is a pertinent chal-

lenge due to the varying complexity of their dynamical

environments, shape and communication delays due to

distance. Thus, autonomous navigation methods are con-

tinually being developed and improved in current research

to enable their safe exploration. These methods often in-

volve using horizon-based Optical Navigation (OpNav) to

determine the spacecraft’s location, which is reliant on the

visibility of the horizon. It is critical to ensure the reli-

ability of this measurement such that the spacecraft may

maintain an accurate state estimate throughout its mis-

sion. This paper presents an algorithm that generates

control maneuvers for spacecraft to follow trajectories that

allow continuously usable optical measurements to main-

tain system observability for safe navigation. This algo-

rithm improves upon existing asteroid navigation capabil-

ities by allowing the safe and robust autonomous target-

ing of various trajectories and orbits at a wide range of

distances within optical measurement range. It is adapt-

able to different asteroid scenarios. Overall, the approach

develops an all-encompassing system that simulates the

asteroid dynamics, synthetic image generation, edge de-

tection, horizon-based OpNav, filtering and observability-

enhancing control.

1 Introduction. Asteroid exploration has gained

significant interest in recent times, driven by scientific

research, resource utilization, and planetary defense pur-

poses. Successful missions, such as Hayabusa2 to 162173

Ryugu and OSIRIS-REx to 101955 Bennu, have provided

valuable insights into the composition and structure of

these small bodies.1,2 However, both missions required

extensive observation periods to safely navigate the

uncertain and weak gravitational environments of their

respective targets. For example, OSIRIS-REx spent

nearly a year mapping Bennu before attempting prox-

imity operations,3 while Hayabusa2 similarly mapped

Ryugu for months.4 In addition to these missions, the

DART and Lucy missions also emphasize the need

for detailed pre-mission observations to ensure safe

proximity operations.5,6 These missions highlight the

need for improvements in autonomous OpNav to reduce

the reliance on long observation periods or human-in-the-

loop methods to improve mission efficiency and reliability.

OpNav (OpNav) has become a preferred method

for space missions due to its reliability, accuracy,

and accessibility, particularly when navigating larger

spherical bodies like the Moon or Mars.7 OpNav relies

on visual images of celestial bodies, allowing space-

craft to determine their position by analyzing surface

features or horizons. Some types of OpNav include

surface feature tracking, Line Of Sight (LOS),8 Central

and Apparent Diameter (CAD),9 Lidar-based10,11

and Pole-from-Silhouette, Shape-from-Silhouette or

Localization-from-Silhouette12 methods.

In the case of Hayabusa2, both human-in-the-loop

and autonomous OpNav is used extensively throughout

the mission, from approach to landing and sample

collection phases at asteroid 162173 Ryugu. The

spacecraft employed a series of optical images captured

by its onboard OpNav Camera (ONC) to estimate its

position and velocity relative to the asteroid’s surface.

This information is crucial for accurately guiding the

spacecraft during its low-altitude descents and surface

interactions. In addition, OpNav is used during the

mission’s descent to provide detailed images of Ryugu’s

surface, enabling the mission team to select safe landing

sites. The mission relied heavily on OpNav for proximity

operations, including final descent and collection ma-

neuvers, illustrating its importance in achieving mission

success. Additionally, it also used a marker system for

accurate autonomous operation in close proximity to the

asteroid.13

Similarly, the OSIRIS-REx mission to asteroid 101955

Bennu also utilized human-in-the-loop OpNav during its

approach, orbital phases, and sample collection. The

spacecraft’s onboard navigation system analyzed optical

images captured by its navigation camera to determine

its position relative to Bennu, particularly during its

low-altitude maneuvers. This data allowed OSIRIS-REx

to navigate Bennu’s complex gravitational field, helping

it to select sample collection sites and safely perform

touch-and-go operations. The OpNav system provided

real-time data during the mission’s critical phases,

including orbital insertion, detailed surface mapping, and

final sample collection. Throughout the mission, OpNav

proved invaluable, particularly in guiding the spacecraft

during autonomous operations when Earth-based com-

munication delays are too long for manual intervention.14

Natural feature tracking OpNav is computationally

expensive and may not be effective at large distances

or near the dark side, while using a physical marker

method requires a close proximity to the asteroid. LOS

is useful due to its ease of use and applicability at large

distance, but at the cost of accuracy without radial

range information. The newer silhouette methods offer

promising accuracy and determine asteroid pole and

shape in addition to localization, but may be limited
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by computation time. More advanced methods of

applying OpNav in the asteroid navigation context are

continually being developed to enhance its performance

using innovative techniques. 15 introduces an approach

to optimize the spacecraft’s orbit during the approach

phase by enhancing OpNav observability using the

Fisher Information Matrix (FIM). While this method

significantly improves measurement reliability, it is

still challenged by uncertainties due to the asteroid’s

irregular surface and dynamic environment, which

could introduce errors. Additionally, the optimization

process is too time and computation costly, thus posing

a challenge for its onboard application. In another

work,16 the authors develop real-time image processing

techniques for OpNav around binary asteroids, which

use data-driven approaches to enhance the accuracy

of navigation. However, the computational demand

for processing large datasets in real-time presents a

challenge, potentially limiting onboard resources. 17

presents an observability-based navigation strategy

that combines optical and radiometric measurements to

improve navigation during the asteroid approach phase.

The spacecraft configuration is optimized to enhance the

measurement and state estimation accuracy. However,

this is only applicable to multi-spacecraft formations.

Another specific subset of OpNav involves the horizon-

based method. Unlike the other aforementioned methods,

horizon-based OpNav measures the apparent horizon of

the celestial body to determine the spacecraft’s position

and orientation, making it effective at a wide range of

distances and lighting conditions.18 Furthermore, it

is computationally efficient and feasible for real-time

autonomous application. Horizon-based OpNav has yet

to be fully utilized in asteroid missions, but its proven

accuracy and reliability in spherical-body missions sug-

gest it could be adapted to advance asteroid navigation

capabilities. By using the asteroid’s horizon rather

than relying on surface features, horizon-based OpNav

could ensure continuous and accurate navigation while

expanding the usable range and angles, even in regions

where surface visibility is limited, such as near the dark

side. If successfully adapted for asteroid missions, it

could help improve spacecraft autonomy, early mission

approach time efficiencies, and reduce the need for

manual interventions during critical mission phases.

However, it is inaccurate when observing from an angle

too far near the dark side of a target body when no

horizon is detectable.

Therefore, there is a need to develop a computa-

tionally efficient, autonomous, robust and accurate

OpNav and control algorithm. Ideally, this algorithm

should function at a wide range of distances and angles

while accounting for poor observability regions to ensure

continuous and safe operation. This research proposes a

novel solution: the development of a path-constrained

Lyapunov controller that enhances optical observability

during asteroid missions using the horizon-based method.

Lyapunov control has been explored for application in the

asteroid mission context, however the focus has been on

orbit-attitude control and hovering operations.19,20 This

new proposed controller is dedicated to the improvement

of the OpNav measurement method and ensures that the

spacecraft avoids regions with poor visibility by adjusting

its trajectory in real-time. This approach allows for

continuous and reliable optical measurements, even near

the dark side of the asteroid, thereby enhancing the

overall safety and robustness of autonomous asteroid

navigation.

The core technical approach of this paper involves

deriving a Lyapunov controller that utilizes artificial

potential functions to maintain a path with optimal

observability. Additionally, we developed a synthetic as-

teroid image generation tool to simulate varying lighting

conditions and test the performance of horizon-based

OpNav in different scenarios. These simulations allow us

to identify the limitations of existing OpNav methods,

which then serve as inputs to our controller design.

The proposed controller is tested in realistic mission

scenarios, including orbit maintenance and approach for

asteroid capture, with state estimation handled through

the use of an Extended Kalman Filter (EKF). The

performance of the controller is evaluated using Monte

Carlo simulations to ensure robustness across various

mission profiles. A schematic displaying the flow of the

algorithm is shown in Fig. 1

Figure 1. Overall Algorithm Schematic

The remainder of this paper is structured as follows.

First, we discuss the dynamics model, horizon-based

OpNav, and EKF, which form the foundation of our

navigation system. Next, we describe the asteroid

image generation technique and the edge detection

methods used to test OpNav and analyze its limitations.

Following this, we present the novel contribution of the

observability-enhancing Lyapunov controller. Finally,

we demonstrate the controller’s effectiveness through

analysis of OpNav and EKF performance, validated

using Monte Carlo simulations under realistic mission
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conditions.

2 Background and Preliminaries.

2.1 Dynamics. Let x be the state of our system. Thus,

our generic equation of motion is expressed as follows:

ẋ = f0 (x, t) +Bu (1)

Where f0 (x, t) represents the natural orbital dynamics,

B is the control matrix that maps any control input or

perturbing acceleration u to the state.

The motion of a spacecraft near primitive celestial

bodies, such as asteroids, is influenced by several forces,

including the gravitational pull of the body itself and

the Sun, as well as Solar Radiation Pressure (SRP).

The equations governing this motion are encapsulated

in the Augmented Normalized Hill Three-Body Problem

(ANH3BP), which provides a normalized framework

accounting for these forces in a rotating reference frame.

This Hill frame is defined with the x-axis pointing

from the Sun to the asteroid, the z-axis pointing toward

the angular velocity of the asteroid, and the y-axis

completing the frame.

The spacecraft’s normalized position and velocity

are denoted by r = [x, y, z] and v = [ẋ, ẏ, ż] respectively,

within this frame where ṙ and v̇ are their time derivatives.

The dynamical system is non-dimensionalized with the

unit length (µ/µSun)
1/3R and unit time 1/N using the

gravitational parameter of the primitive body µ and

the Sun µSun, the distance between the Sun and the

primitive body R and the mean motion of the primary

orbits, N =
√

(µSun/R
3). The equations of motion for

the ANH3BP are:21

ẍ = 2ẏ + 3x− x/∥r∥3 + β

ÿ = −2ẋ− y/∥r∥3

z̈ = −z − z/∥r∥3,

(2)

The non-dimensional acceleration due to SRP is repre-

sented by β and calculated as follows:

β =
(

G1

(m/A)R2

) (
1
N

)2(( µ
µSun

)1/3
R

)−1

= G1

(m/A)µ
2/3
Sunµ

1/3
(3)

Where G1 is the solar flux constant and m/A is the

spacecraft mass-to-area ratio.

This may be rewritten in the following state space

form:

f0(x, t) =


v

2ẏ + 3x− x
∥r∥3 + β

−2ẋ− y
∥r∥3

−z −z
∥r∥3


B =

[
03×3

I3×3

] (4)

It is important to note that this model involves

approximation due to the assumptions that the aster-

oid is in a circular orbit and SRP acceleration is constant.

An important defining condition for an orbit to be

bounded around the primitive body within this model is

the maximum semi major axis, defined as follows for a

frozen terminator orbit:22

amax =

√
3

4

√
µ(m/A)

G1
R (5)

Where amax is the maximum semi major axis of the

orbit beyond which escape occurs. A random value for

the semi major axis can be selected between the range of

the maximum stable value and the mean radius of the

asteroid when testing for orbital testcases. This is used

as a reference value to define the numerical simulations

in Sections 5 and 6.

An alternate representation of this dynamics can

be formulated using Milankovitch elements. To model

the ANH3BP in Milankovitch form, the Gauss planetary

equation form is used with added SRP and solar gravity

perturbations as shown:

f0(x) =


0

0

0

0

0
h
r2

+B(aSRP + aSolar)

x =

 h

e

L


B =

1

h

 r̃
1
µ (ṽr̃ − h̃)

ẑ·r
h(h+ẑ·h)

h


aSRP =

 β

0

0


aSolar = −µ

(
r − rasteroid

∥r − rasteroid∥32
+

rasteroid

∥rasteroid∥32

)

(6)

Where h is the angular momentum vector, and h is its

magnitude.

2.2 Horizon-based OpNav. Moving on to the measure-

ment implementation, Christian’s OpNav (OpNav) algo-

rithm18 is utilized. It is a computing time efficient and

accurate method to calculate the position of an observer

from a target body as it directly computes from the edge

detected horizon points rather than using curve fitting.

The observations for the EKF and the simulation are de-

rived from this OpNav process. The Christian-Robinson

OpNav pseudocode can be depicted as in Algorithm 1.
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Algorithm 1 Pseudocode for the Christian-Robinson

OpNav algorithm18

1: procedure rC = OpNav((u⃗
′

i)
n
i=1,K

−1, TP
C , a, b, c)

2: Compute D = diag[1/a, 1/b, 1/c]

3: Compute R = DTP
C K−1

4: for i = 1 to n do

5: x⃗′i = Ru⃗i
6: s′i = x⃗′i/∥x⃗

′
i∥

7: end for

8: Construct H from {s′i}
n
i=1

9: Compute TLS solution for n

10: Compute TP
C = (TP

C )⊤

11: Compute D−1 = diag[a, b, c]

12: Compute rC
13: end procedure

14: return rC

The inputs include the pixel coordinates of all the de-

tected points in the camera frame, the inverse camera

calibration matrix, the attitude transformation matrix

between the parent body to the camera, and the triaxial

parameters of the shape of the target body. The inverse

camera matrix is defined as follows:

K−1 =

 1
dx

−α
dxdy

αvp−dyup

dxdy

0 1
dy

−vp
dy

0 0 1

 (7)

Where dx and dy are the unit pixel density in the x and

y directions respectively, f is the focal length, up = S/2

and vp = S/2 are the principal point coordinates and α

is the skew of the pixels. S is the image size measured in

pixels. The focal length can be calculated as follows:

f =
(S/2)

tan(θ/2)
(8)

Where θ is the is the camera field of view angle.

Since this is a case of known attitude, the magni-

tude of the position measurement returned by the

OpNav algorithm is transformed into the ANH3BP

coordinate frame using the current attitude.

Since we require the measurement covariance to

use this method with an EKF, The analytical form is

shown in Algorithm 2.

2.3 Extended Kalman Filter. An Extended Kalman

Filter (EKF) is used to perform the state estimation us-

ing the OpNav measurements. Testing the EKF’s per-

formance across a range of operational scenarios help to

establish the algorithm’s robustness and identify areas

for enhancement. First, some key assumptions include

the satellite’s ability to continuously observe the aster-

oid with its optical camera via nadir pointing (i.e., the

Algorithm 2 OpNav Analytical Covariance Algorithm23

1: procedure OpNav COV(D, (u⃗
′

i)
n
i=1, σpix, dx)

2: Compute rC and n using Algorithm 1

3: Form covariance of the horizon measurements, Rs

4: for each u⃗′i do
5: Compute the partial, Ji
6: Compute the variance of each residual, σ2

vi

7: Construct residual covariance, Ry

8: end for

9: Compute least-square covariance, Pn

10: Compute F , the partial derivative of rC wrt n

11: Calculate OpNav Covariance, Pr

12: end procedure

13: return Pr

camera is always oriented to point towards the center of

the target body), the attitude of the spacecraft relative

to the asteroid is always known, the asteroid shape is

known, and the availability of initial state estimates with

inherent uncertainties. These assumptions are made to

simplify the problem and focus on estimating the posi-

tion. Constraints involve the limitations of the camera’s

resolution and the accuracy of onboard sensors, the max-

imum semi major axis for a stable orbit in this system, as

well as the computational complexity of generating and

processing synthetic observation images in real-time. The

EKF is defined in Cartesian form, and algorithm used is

as follows.

x̂k|k−1 = f
(
x̂k−1|k−1,uk−1

)
Pk|k−1 = FkPk−1|k−1F

⊤
k +Qk−1

ỹk = zk − h
(
x̂k|k−1

)
Sk = HkPk|k−1H

⊤
k +Rk

Kk = Pk|k−1H
⊤
k S−1

k

x̂k|k = x̂k|k−1 +Kkỹk

Pk|k = (I −KkHk)Pk|k−1

(9)

Where the state space matrix in Cartesian form is:

x =
[
x y z ẋ ẏ ż

]⊤
(10)

The state transition matrix is calculated as the jacobian

of the equations of motion of the ANH3BP from Equation

1. In the Cartesian case, we get the following jacobian:

J =



0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

3− 1
r3

+ 3x2

r5
3xy
r5

3xz
r5

0 2 0 0
3yx
r5

− 1
r3

+ 3y2

r5
3yz
r5

−2 0 0 0
3zx
r5

3zy
r5

−1− 1
r3

+ 3z2

r5
0 0 0 0

0 0 0 0 0 0 1


(11)

where r =
√

x2 + y2 + z2.

The OpNav measurement returns values in the format

z =
[
rC,x rC,y rC,z

]⊤
(12)
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The observation matrix H is:

H =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 (13)

2.4 Lyapunov Control. Lyapunov control is a method

that ensures dynamical system stability through the

development of Lyapunov functions in a nonlinear

feedback control case. It is particularly useful as it

allows for the creation of an analytical controller with

light computational cost and is easy to implement. Fur-

thermore, it is possible to incorporate path constraints

using artificial penalty functions. However, the lyapunov

controller is not guaranteed the path constraint and

requires gain or penalty weight and sharpness tuning.

It may also not return an optimal solution, but its

efficiency and satisfactory performance prove it to be a

good option for this research. A Lyapunov function24 is

a scalar continuous function V (x) that is locally positive

or negative definite about a reference state xr of an

autonomous system ẋ = f(x).

In spacecraft control, Lyapunov functions can be

designed to guide the spacecraft’s state toward a desired

configuration, such as a stable orbit, attitude or par-

ticular rendezvous point.25 By defining an appropriate

Lyapunov function for a spacecraft’s position and veloc-

ity, the system can be controlled to remain stable under

perturbations, such as SRP or irregular gravitation in

the case of an asteroid. Control inputs are applied to

approach a desired target state. These inputs are derived

from the gradient of the Lyapunov function, ensuring

that the spacecraft moves in a direction that reduces

the overall system energy. The approach is to design

a controller u = g(y) such that V (x) is a Lyapunov

function.

3 Synthetic Image Generation Pipeline. The im-

age generation is done using built-in matlab graphics

tools. The procedure involved illuminating a white

sphere, ellipsoid, or 3-dimensional mesh model of an as-

teroid against a black background with the mean radius

of Bennu (or any sample asteroid) using an infinitely far

away light source that is aligned to originate from the neg-

ative x-axis to represent a parallel ray light source like the

Sun. Gaussian white noise is added to the image to add

realistic complexity for the filter to process. Edge detec-

tion is executed by identifying high gradient magnitudes

between pixels on the image, which is commonly where

the lit limb edge meets blank space. The camera is then

placed based on an input distance, azimuth and elevation

as calculated prior. A few examples of generated images

are shown in Fig. 2, followed by a stepwise summary of

the MATLAB algorithm utilised for the synthetic image

generation:

Figure 2. Example synthetic images of a half illu-

minated sphere (with noise), ellipsoid, and Bennu

model at a distance of 5 radii

1. Generate either a sphere, ellipsoid or mesh scaled ac-

cording to either the camera settings and distance, or

an experimentally determined scale factor. With the

OpNav settings used in this research, this is found

experimentally to be 1.3065. This was found by

visually comparing generated images with real im-

ages and verifying the OpNav measurement across a

range of distances, then fitting an ideal scale factor

to account for MATLAB’s inherent figure environ-

ment scaling.

2. Create a figure with invisible, equal and tight axes

and a black background. Plot the generated object

as a surface with LineStyle set to none and a white

colormap.

3. Set the view angle, camera position and roll accord-

ing to the current spacecraft attitude.

4. Delete existing lights and replace them with a light

set at an infinite distance to simulate the Sun. Use

gouraud lighting and dull material for realistic sur-

face and lighting conditions, with no ambient or

specular reflection, a diffused reflection coefficient of

1 and a shininess coefficient of 10. These parame-

ters were chosen as they produced the most visually

accurate images compared to real examples.

5. Set the figure size and axis limits according to the

image size, apply the camera’s FOV setting to the

axes camera view angle and set aspect ratios to be

equal

6. Store the image as a frame, then convert it to an

image and resize it to the calculated image size in

pixels. Convert the image to grayscale and output it

for further processing.

To detect the horizon points from the generated syn-

thetic images, we use a gradient-based approach. First,

calculate the gradient of the image matrix and find

the gradient magnitude at each pixel. Next, find the

maximum gradient magnitude across the entire image.

Then, multiply this value by 0.7 to define a minimum

gradient threshold and find the pixel coordinates of all

points that have a gradient magnitude above it. These

are the desired horizon points. The value of 0.7 was

chosen due to offering the best performance after some

experimental testing. To avoid detection of random noisy
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pixels, set the absolute minimum gradient threshold to

0.1, which was determined experimentally by finding an

appropriate threshold above the maximum gradient in

dark-side lighting conditions, but below the maximum

gradient of regular lighting conditions.

4 Observability Enhancing Controller Design.

The goal is to design a controller that generates a

controlled trajectory along which the view of the asteroid

is always in favorable lighting condition. A Lyapunov

controller is sufficient for this application, and both easy

to implement as well as computationally efficient. The

objective is to develop a Lyapunov controller that avoids

certain regions where the OpNav algorithm performs

poorly. These poor observability regions have been

characterized experimentally in Section 5.

We have designed two types of Lyapunov controllers,

where the first controller aims to target and control

the spacecraft towards the asteroid, starting at rest

from a distance at the maximum observability range of

OpNav and the second controller transfers to a certain

small frozen terminator orbit around the asteroid. The

motivation behind developing two distinct controllers is

that they both provide benefits for different situations.

The first controller uses a Cartesian form since it is easy

to tune feedback gain, guarantees convergence without a

control bound and better performing to target a specific

target rendezvous point. This is ideal for approach,

flyby or capture scenarios. The second controller uses

Milankovitch elements as this is better to control and

transfer between orbits when already in close proximity

to the body and there is no specific target rendezvous

point, but rather a target orbit. The orbit maintenance

scenario uses the second controller, while the approach

and capture scenario uses both to form a two-stage

switching Lyapunov controller.

Both controllers have the same state path constraints,

which have been experimentally determined by testing

the OpNav algorithm’s performance across varying

distance and angle.

The constraints are listed as follows:

• Minimum radius on position of 2Rasteroid

• Maximum radius on position of 25Rasteroid

• Keep-out Cone with half-angle of 30 degrees along

positive x-axis to avoid dark-side observations

where Rasteroid is the radius of the asteroid.

4.1 Controller 1 - Asteroid Approach Targeting. In this

case, the intent is to ensure the spacecraft safely and suc-

cessfully approaches the asteroid. Thus, we may use the

origin, or gravitational center of the asteroid, as a fixed

target state. This allows the spacecraft to modify its tra-

jectory to exactly target the asteroid and account for per-

turbations, which is useful during the initial stages of a

mission while approaching it from a distance. Using the

system dynamics from Equation 3, the first step is to

derive the error dynamics to provide a reference for the

Lyapunov controller to reduce. This defines the error be-

tween the desired and current state of the spacecraft in

terms of the dynamical system. We start by defining the

state error δx as the difference between the true state

x and the desired state x∗. However, since the desired

state is the origin of the system and forms a zero vector,

it is omitted from the equation. The error dynamics are

represented as the derivative of the state error.

δx = x

δẋ = ẋ
(14)

This can be rewritten in matrix form considering velocity,

acceleration, and control elements.

δẋ =

[
v

a+ u

]
(15)

Now, we derive the controller by considering the candi-

date Lyapunov function as follows:

V =
1

2
δx⊤Kδx (16)

Where K must be a positive definite 6 × 6 matrix. It is

therefore full rank and invertible. Take the derivative to

find the Lyapunov rate:

V̇ =
1

2

(
δẋ⊤Kδx+ δx⊤Kδẋ

)
= δx⊤Kδẋ (17)

The next step is to incorporate path constraints using

artificial potential functions. To do this, the Lyapunov

function and rate results need to be augmented by con-

sidering some additive potential function VPi
from each

penalty function, which we can define in the following

form:

VP = wV (x)P (g(x)) (18)

Where w is the weight of the penalty, and P is the penalty

function in terms of the path constraint g(x) ≤ 0 which

must be negative at the target state and smooth every-

where. The penalty function should also be monotonically

increasing in g for g > 0. For this, we define the penalty

functions to be set to 0 when the constraint condition is

not violated, and greater than 0 when it is. This can be

represented as follows:

P (g)

{
> 0 g > −ε

= 0 g ≤ −ε
(19)

Where ϵ may be defined to represent the point at which

the constraint becomes applicable. We use the exponen-

tial form for all of our constraints since it is a smooth
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and continuous function and therefore compatible in the

Lyapunov context.

Pi(gi) = ekigi (20)

Where k is the sharpness parameter and is one of the vari-

ables that may be tuned. Now, we may add the three de-

sired artificial potentials for each path constraint penalty

as follows:

V̂ = V + VP1
+ VP2

+ VP3
(21)

Substituting in for the weights and penalty functions then

taking the derivative, we find the augmented Lyapunov

rate expression:

˙̂
V = V̇ (1 +

∑
ωiPi) + V

∑
ωiṖi (22)

Using this form, we attempt to derive a Lyapunov con-

troller. For simplicity, we start by assuming a case with

just one penalty function:

V̂ = V + VP (23)

Repeat the substitution of weights and penalty functions

to get an expression for the augmented Lyapunov rate:

˙̂
V = V̇ (1 + ωP ) + V ωṖ (24)

Use the following chain rule properties to compute the

derivatives of V and P :

V̇ =
dV

dx

dx

dt
= (δx⊤K)(f0 (x, t) +Bu) (25)

Ṗ =
dP

dg

dg

dx

dx

dt
=

dP

dg

dg

dx
(f0 (x, t) +Bu) (26)

Additionally, to get the desired stabilizing controller, we

then set the Lyapunov rate equal to a negative simple

Lyapunov candidate function and algebraically solve for

the control expression.

˙̂
V = −δx⊤Qδx (27)

Where Q is assumed to be of the form I6×6 and posi-

tive definite. We then equate the two expressions for the

augmented Lyapunov rate and solve for the control u.

δx⊤((1 + ωP )K + ω( 12Kδx)dPdg
dg
dx )(f0 +Bu)) = −δx⊤Qδx

(28)

For compact expression, define the following:

L = ((1 + ωP )K + ω(
1

2
Kδx)

dP

dg

dg

dx
) (29)

This may be expanded to consider multiple penalty func-

tions in the following form:

L = ((1 +
∑

ωiṖi)K + (
1

2
Kδx)

∑
ωi

dPi

dgi

dgi
dx

) (30)

Where L is a 6× 6 matrix. It is assumed to be full rank

and therefore invertible. Substitute back into the original

equation.

Bu = −L−1Qδx− f0 (31)

B is not square, therefore we use a pseudo-inverse to get

the following final result for the controller:

u = −(B⊤B)−1B⊤(L−1Qδx− f0) (32)

Now, we move on to defining our three penalty con-

straints in mathematical terms.

Start by deriving the minimum radius constraint

using the parameters rmin, weight ω1 and sharpness k1
to find the following formulation:

g1(x) = r2min − r2 = r2min − (x2 + y2 + z2) (33)

dg1(x)

dx
= −2r =


−2x

−2y

−2z

03×1

 (34)

Repeat the process for the maximum radius constraint,

rmax with the weight ω2 and sharpness k2.

g2(x) = r2 − r2max = (x2 + y2 + z2)− r2max (35)

dg2(x)

dx
= 2r =


2x

2y

2z

03×1

 (36)

Repeat the process for the cone constraint along x-axis

with half angle α, weight ω3 and sharpness k3.

g3(x) =
y2 + z2

x2
− tan2 α (37)

dg3(x)

dx
=



−2(y2+z2)
x3

2y
x2

2z
x2

03×1

 (38)

These penalty functions are then incorporated into the

controller derived earlier to impose the path constraints.

4.2 Controller 2 - Frozen Terminator Orbit Transfer.

For this controller, Milankovitch elements are used be-

cause they have no singularity and are better for orbital

transfer maneuvers since it is possible to target a certain

orbit state over a specific point. The derivation procedure

is similar to Controller 1, with a few additional consid-

erations due to the nature of the Milankovitch elements.

For this controller, we only target the slow variables and

free the fast variable, which in this case would be the true

longitude. The error state can be defined as follows:

δxslow = xslow − x∗
slow (39)
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Where the slow state can be written as follows:

xslow =
[
a e i Ω ω M

]⊤
(40)

Furthermore, this leads us to the result that the slow state

time derivative is a 05×1 vector. Next, considering a can-

didate Lyapunov function as follows:

V = δx⊤
slowKδxslow (41)

Where K ∈ R5×5 and is positive definite. Therefore, the

Lyapunov rate is:

V̇ = 2δx⊤
slowKδẋslow (42)

The rest of the derivation is mostly identical to Controller

1. There are a few differences, such as x being replaced

by xslow and ẋslow = Bslowu. This simplification is made

possible since the time derivative of the slow variables is

f0,slow ≈ 0 with minor deviations occurring due to SRP

and solar gravity perturbations. Furthermore, to get the

desired stabilizing controller, we set the Lyapunov rate to

a negative simple Lyapunov candidate function, similar

to Controller 1. Then, we get the following derivation:

δx⊤((1 + ωP )K + ω( 12Kδx)dPdg
dg
dx )(f0 +Bu)) = −δx⊤Qδx

(43)

Where Q is assumed to be of the form I5×5 and positive

definite. For compact expression, define the following:

L =

[
2(1 + wP )K + wKδxslow

∂P

∂g

∂g

∂xslow

]
Bslow

This may be expanded to consider multiple penalty func-

tions in the following form:

L = (2(1 +
∑

ωiṖi)K + (Kδx)
∑

ωi
dPi

dgi

dgi
dx

) (44)

Where L ∈ R5×3 and assumed to be full. Lastly, Solve

for the control u by using a pseudo-inverse since L is not

square:

u = −
(
L⊤L

)−1
L⊤δxslow (45)

Using similar form as controller 1 for the penalty func-

tions, we now redefine them in Milankovitch element

form. Start with the minimum radius constraint using

parameters, rmin, weight ω1 and sharpness k1.

g1(xslow) = r2min − h2/µ

1 + e
(46)

dg1(xslow)

dxslow
=



− (2h1+h2
2+h2

3)
µ

1
1−e

− (2h2+h2
1+h2

3)
µ

1
1−e

− (2h3+h2
2+h2

1)
µ

1
1−e

− e1h
2

µe(e−1)2

− e2h
2

µe(e−1)2

− e3h
2

µe(e−1)2


(47)

Next, formulate the maximum radius constraint, rmax,

weight ω2 and sharpness k2.

g2(xslow) =
h2/µ

1 + e
− r2max (48)

dg2(xslow)

dxslow
=



− (2h1+h2
2+h2

3)
µ

1
1−e

− (2h2+h2
1+h2

3)
µ

1
1−e

− (2h3+h2
2+h2

1)
µ

1
1−e

− e1h
2

µe(e−1)2

− e2h
2

µe(e−1)2

− e3h
2

µe(e−1)2


(49)

Lastly, derive the cone constraint along the x-axis with

half angle α, weight ω3 and sharpness k3.

g3(x) = cos(
π

2
+ α)− (

h1
h
) (50)

dg3(xslow)

dxslow
=



h2
2+h2

3

h1.5

−h1h2

h1.5

−h1h3

h1.5

0

0

0

 (51)

These penalty functions are then incorporated into the

controller derived earlier to impose the path constraints.

5 OpNav and EKF Performance Analysis.

To start, a simplified base case is used by choosing

the asteroid Bennu for which abundant information is

available. This is ideal for testing and tuning the filter as

simulated ’truth’ and filter predictions can be validated.

The relevant initial conditions and properties used are

shown in Table 1, where M is the mass of the asteroid,

e is the eccentricity of the asteroid’s orbit and r is the

mean radius of the asteroid.
2,26

Parameter Value

M 7.329× 1011 kg

µ 4.8904× 10−9 km3/s2

µSun 132712× 106 km3/s2

G1 1× 108 kg.km3/(s2.m2)

B 33

a 168505699.04945242405 km

e 0.2037450762416414

d 1.72× 108 km

r 0.241 km

Table 1. Dynamical Parameters

Additionally, the OpNav parameters used for this

research are shown in table 2.
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Parameter Value

θFOV 90◦

S 1000 pixels

α 0

dx 1

dy 1

Table 2. OpNav Parameters

5.1 Distance and Angle Accuracy Analysis. The

OpNav algorithm’s accuracy at varying distances and

lighting conditions is examined by running multiple

simulations with noise at varied fixed points.

In the case of distance, 10 test cases are run at

each distance at increments of 1 km starting from 1

km upto 30 km. A side-on view where exactly half of

the body is lit is used for consistency to fix the angle

at a value where the OpNav algorithm is known to be

accurate.

Figure 3. OpNav Error Variation over Distance

As can be seen in Fig. 3, the OpNav algorithm is

highly effective at low range, but starts to involve major

error at distances greater than 25-30 times the radius

of the asteroid. In this case we can see that deviation

becomes visibly significant after a distance of around 10

km. However, the analytical covariance still provides

a good envelop of the errors. We can define one range

observability constraint based on this result. While

OpNav does still provide results beyond this, eventually

the magnitude of the error exceeds the absolute value of

the distance itself, which makes it unusable after a certain

point. Therefore, the algorithm must be used within

this range, which has now been successfully determined.

This distance is still a greater capability than near-range

observation methods which require the spacecraft to be

much closer than 25-30 times the asteroid radius.

In the case of lighting conditions, 5 test cases are

run at each angle at increments of 15 degrees starting

from -90 degrees (straight-on or full moon) upto +90

degrees (dark-side or new moon), where 0 degrees is

aligned with the side-on view. These are done with a

fixed distance of 5 km for consistency and at a range

where the OpNav algorithm is accurate.

Figure 4. OpNav Error Variation over Angle

We can infer from the graphed results that the algorithm

is accurate for most angles except straight-on due to

the terminator effect, as well as angles close to the

dark side as the size of the lit horizon shrinks. The

performance deteriorates if the spacecraft is viewing the

asteroid from within 30 degrees of the x axis near the

dark side. The covariance is undefined when viewing the

dark side as there are no horizon points detected. The

error is accordingly equivalent to the true distance of the

spacecraft in the implementation used for this research,

as the OpNav algorithm returns a zero measurement due

to an absence of input horizon points. In other words,

the measurement is unusable in these lighting conditions.

From this experiment, we define a keep-out cone to

ensure the observability, which is given as a cone with a

30 degree half angle along the x-axis.

5.2 OpNav Elliptic Shape Performance. We now test

the OpNav performance against increasingly elliptical

bodies. As can be seen in Fig. 5, the OpNav error and

covariance increase considerably with highly elliptic bod-

ies. While it is still valid up to an ellipsoid with shape

ratio 3:1, its performance may be unsatisfactory for any

bodies significantly more elliptical. There is potential for

improvement on the OpNav algorithm’s effectiveness in

such situations. For this testcase, we simulate along one

revolution of an FTO with a radius of 2.0429km.

5.3 Trajectory Testing. The OpNav algorithm and

EKF are tested across various types of trajectories,

such as hyperbolic approaches and flybys, distant encir-

clements, unique orbits and more to ascertain properties

of its performance across various situations and deduce

when it is more effective or may have room for further

improvement.
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Figure 5. OpNav Error Plots for Sphere, [3 1 1]

and [5 1 1] Ellipsoid

These initial conditions are arbitrarily chosen in

terms of both position and velocity to provide some

variation and generate natural paths that a spacecraft

may follow depending upon its nature of approach

to an asteroid. A few sample results can be seen in

Fig. 6. The first case depicted a hyperbolic flyby from

a large distance. The second test is conducted at a

medium range, keeping a similar distance from the

asteroid while changing the lighting condition. The last

case demonstrates another flyby where the asteroid is

approached closely and the spacecraft passes through

the dark side. These demonstrate the EKF’s ability

to smoothen the predicted state and match the true

trajectory once the spacecraft is within range for effective

OpNav measurements. However, it diverges at large

distances.

Based on this behaviour, we can infer that when ap-

proaching near-linearly from the same angle, position

estimation is best. For highly ellipsoidal cases, when

angle varies extremely or highly nonlinear trajectory,

horizon-based OpNav, and hence EKF, become inaccu-

rate. For near-spherical cases, OpNav seems to work

accurately at all times. OpNav is ideal for medium range

when in hyperbolic trajectory, before view angle starts

changing rapidly (before/after view point). The state

estimates become inaccurate at large distances (greater

than 25-30x mean radius).

6 Numerical Results.

6.1 Orbit Maintenance Scenario. In order to simulate

the application of the Lyapunov controller in a realistic

scenario, we implemented it in a loop such that the

Lyapunov controller computes each successive timestep

based on the EKF’s prediction, rather than using the

true position. The true state is then updated using

the control calculated by the controller, from which the

OpNav measurement is taken at a realistic frequency

of every 1.5 hours and provided to the EKF for the

next prediction. This means that any significant error

in the EKF’s position estimate for the spacecraft could

lead to complete divergence of the true and estimated

states. Hence, it is critical for the measurements to be

continuously reliable.

To demonstrate the effectiveness of the observabil-

ity enhancing controller, we develop a test scenario

where a spacecraft starts with an arbitrary initial

condition on a trajectory to flyby passing behind the

dark side of Bennu. The target is a circular orbit

with an inclination just above 30 degrees. This avoids

the dark-side cone but provides a useful edge case to

test where the spacecraft may often travel through the

poor observability region in its controlled trajectory

without an observability penalty. The initial conditions

in cartesian terms are r = [1.0214, 0,−2.0429] km and

v = [40.493, 40.493, 40.493] mm/s. The gain is updated

to an order of magnitude lower and found to provide

better performance given the proximity to the asteroid.

K2.1 =



10−2 0 0 0 0 0

0 10−3 0 0 0 0

0 0 10−3 0 0 0

0 0 0 10−4 0 0

0 0 0 0 10−3 0

0 0 0 0 0 10−4

 (52)
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Figure 6. Sample OpNav Testing Trajectories

For this case, the following initial covariance is used (co-

variances for position in
[
km2

]
and velocity in

[
km2

s2

]
):

P0 =


3.2761 0 0 0 0 0

0 3.2761 0 0 0 0

0 0 3.2761 0 0 0

0 0 0 8.544× 10−17 0 0

0 0 0 0 8.544× 10−17 0

0 0 0 0 0 8.544× 10−17


(53)

To compare results, we begin by testing the Lyapunov

controller without the observability improving penalty

functions as shown in Fig. 7. A few camera snapshots

with the detected horizon points highlighted in red

can be seen in Fig. 8. As can be seen in the results

for the controller without an observability penalty, the

spacecraft travels through the poor observability region

near the dark side of the asteroid. This leads to a faulty

measurement characterized by the spike in the OpNav

measurement history. This is used by the EKF, causing

the true and estimated trajectories to diverge.

We now compare this performance to that of the

observability enhancing controller in Fig. 9. A few

camera snapshots with the detected horizon points

highlighted in red can be seen in Fig. 10. In the

observability enhancing case, the controller successfully

avoids the poor observability region, as can be seen by

the consistent matching of the OpNav measurement and

EKF prediction to the true trajectory at all times.

Monte Carlo Analysis To demonstrate the robust-

ness of the algorithm, a monte carlo analysis is conducted

to perform a statistical analysis of its success rate. A real-

istic initial standard deviation is defined for the position

error across each direction (x, y and z) of σ = 30 meters,

approximately 10% of the asteroid Bennu’s radius. This

is used to apply an initial error to the true initial state to

generate the EKF’s initial known state. The simulation is

run for 20 iterations. To start, we test the version with-

out observability enhancement in order to understand the

severity of failures in this scenario. As per the results in

Fig. 11, the Lyapunov controller fails in every case with-

out the observability enhancement, as it passes through

the poor observability region in every test. The EKF and

true dynamics diverge completely and lead to the space-

craft either crashing into the asteroid or travelling out of

the system. Now, we compare this with the observability

enhancing case in Fig. 12. The observability enhancing

Lyapunov controller shows better performance and suc-

cess rate of the spacecraft reaching its desired orbit. It

succeeds in 18 out of 20 iterations. This is a major im-

provement in performance, and supports the utility of the

observability enhancing controller.
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Figure 7. True, OpNav and EKF Trajecto-

ries Without Observability Enhancing Penalty Lya-

punov Control around Bennu shown in 4 views

Figure 8. Sample Image History with Detected

Horizon Points from Fig. 7 for Case Without Ob-

servability Enhancement
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Figure 9. True, OpNav and EKF Trajectories With

Observability Enhancing Penalty Lyapunov Control

around Bennu shown in 4 views

Figure 10. Sample Image History with Detected

Horizon Points from Fig. 9 for Case With Observ-

ability Enhancement
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Figure 11. Monte Carlo Simulation of 20 True Tra-

jectories using Basic Lyapunov Controller

Figure 12. Monte Carlo Simulation of 20 True Tra-

jectories using Observability Enhancing Lyapunov

Controller

6.2 Approach and Capture Scenario. Beyond the orbit

maintenance scenario, it is important to demonstrate the

effectiveness of this controller in a greater variety of sit-

uations, including those starting further away from the

asteroid. Therefore, we tested this algorithm in a specific

testcase where we start by targeting the asteroid using

the phase 1 controller and switch over to the phase 2 con-

troller once the spacecraft is within 10 asteroid radii. At

this point, the controller targets a frozen terminator orbit

very near the surface of the asteroid, first getting into the

correct plane and then reducing the semi major axis. For

this case, the following initial covariance is used (position

covariances in
[
km2

]
and velocity covariances in

[
km2

s2

]
):

P0 =


3.2761 0 0 0 0 0

0 3.2761 0 0 0 0

0 0 3.2761 0 0 0

0 0 0 8.544× 10−12 0 0

0 0 0 0 8.544× 10−12 0

0 0 0 0 0 8.544× 10−12


(54)

The gains found to return best performance for controller

phase 1 in this particular testcase is K1 = 0.01I6×6 for

controller 1. Additionally, the penalty function parame-

ters used are rmin = 2×Rasteroid, ω1 = 1 and k1 = 1 for

the minimum radius constraint rmax = 25 × Rasteroid,

ω2 = 1 and k2 = 1 for the maximum radius constraint

and α = 30deg, ω3 = 1 and k3 = 1 for the cone constraint.

For controller 2, there are two sets of gains used,

which are tuned and determined experimentally. First,

one that is ideal to transfer to the plane of the FTO

but not necessarily attain the desired semi major axis.

Second, one that is ideal to transfer from any circular

orbit in the FTO plane to the desired FTO orbit. The

chosen gains are as follows:

Gain 2.1 for transferring from any incoming state

from the stage 1 controller to the FTO plane:

K2.1 =



10−2 0 0 0 0 0

0 10−3 0 0 0 0

0 0 10−3 0 0 0

0 0 0 10−4 0 0

0 0 0 0 10−3 0

0 0 0 0 0 10−4


(55)

Gain 2.2 for transferring between current FTO to desired

FTO:

K2.2 =



10−3 0 0 0 0 0

0 10−3 0 0 0 0

0 0 10−3 0 0 0

0 0 0 10−3 0 0

0 0 0 0 10−6 0

0 0 0 0 0 10−6


(56)

The penalty function parameters chosen for controller 2

are identical to that for controller 1, except the weight

for the cone constraint is increased to ω3 = 10. This

leads to better performance in terms of avoiding the poor

observability region at a closer proximity to the asteroid.

The complete trajectory is shown in Fig. 13.

Based on the results, we can see that the overall con-

troller is successful. It approaches the asteroid with a

low control input where the control profile only seems to

diverge because it is a very small, precise and continuous

adjustment that is cut off before reaching the target.

It then switches to the FTO transfer controller which

correctly changes and maintains the desired plane with

minimal and quick control input. Lastly it transfers to

the final desired FTO using some small final adjustments.

In terms of observability, which is the primary goal,

the controller does maintain a trajectory within the

minimum and maximum radii to avoid intersecting the

asteroid or straying too far. Additionally, in Fig. 14, we

can see that the controller does adjust the spacecraft’s

trajectory to avoid entering the keep-out cone which

would lead to a viewing angle too close to the dark side.

Therefore, it is improving observability which would

normally lead to an erroneous result without control.
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Figure 13. Controlled Spacecraft trajectory around

Bennu, Diagonal view

Figure 14. Controlled Spacecraft trajectory around

Bennu, Straight-on view

We then compared the regular and observability

enhancing controllers in this scenario, then applied

OpNav and state estimation using the EKF along

the generated trajectory. Note that in this method,

the Lyapunov controller is not reliant on the state

estimate, but rather used to generate the full trajec-

tory upon which the rest of the algorithm is tested.

However, the intent is to test this case to the same

degree as the orbit maintenance scenario in future devel-

opments on this topic. These results are shown in Fig. 15.

Next, a monte carlo analysis is conducted for 20

iterations using an initial standard deviation of the

position error across each direction (x, y and z) of

σ = 0.2 kilometers. This is approximately 100% of

the asteroid Bennu’s radius and is used to apply an

initial error to the true initial state to generate the

EKF’s initial known state. It is set to a higher value to

more rigorously test the EKF robustness since it follows

a predetermined true trajectory in this case. This is

different from the orbit maintenance scenario where the

true trajectory was dependent on the Lyapunov control

derived from EKF state estimates. As seen in Fig. 16,

there is a clear spike in error when the spacecraft passes

through the poor observability region in every test while

using the original version of the controller without path

constraints. Meanwhile, as seen in Fig. 17 the path

constrained controller successfully reduces this error on

every iteration. This supports the robustness of the

controller in this scenario.

7 Discussion. This paper presents a promis-

ing approach to autonomous asteroid OpNav using

a Lyapunov controller with path constraints for

observability-enhancing maneuvers. The approach offers

a combination of OpNav methods, state estimation

and control, especially in the context of navigating the

challenging environments around asteroids.

One of the major challenges identified is the lim-

ited applicability of the OpNav algorithm under extreme

lighting conditions, such as when the spacecraft is

positioned behind the dark side of the asteroid. This

creates poor observability for the system due to an

undetectable horizon, potentially leading to inaccurate

state estimations. The observability enhancing controller

concept allows the design of a control scheme that

ensures a spacecraft follows a trajectory that avoids

these faulty measurements. This is a better method

than simply discarding poor measurements, as that

may lead to an extended gap without a reference,

causing the state estimate to diverge. This research

also develops understanding of the applicability of

horizon-based OpNav as a measurement for asteroid

navigation. It is found that it is effective up to a range of

25-30 times a target asteroid’s radius, outside of a cone

with a 30 degree half angle from either straight-on or

dark-side viewing and displays reasonable performance

with an ellipsoidal target body upto a 3:1 shape axis ratio.

The EKF, while effective under certain conditions,

shows divergence in scenarios with extreme noise, highly

nonlinear dynamics, or erroneous initial states. This

highlights the need for further tuning and refinement of

the EKF’s robustness. However, it is effective within
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Figure 15. Controlled trajectory without (T) and

with (B) Observability-improving penalty and EKF

performance

Figure 16. OpNav position error monte carlo with

varied initial position for control without observ-

ability penalty (σ = 0.2 km)

realistic bounds and expectations of these parameters

that would be found in an actual space mission. The

system demonstrates effective state estimation for

spherical bodies and near-stable orbits, but performance

deteriorates with more complex, nonlinear trajectories

Figure 17. OpNav position error monte carlo with

varied initial position for control with observability

penalty (σ = 0.2 km)

or highly elliptical asteroids. This indicates a need for

improvements to the algorithm that can handle irregular

bodies. This is explained by the fact that the current

model does not yet provide sufficient observability

for shape estimation, particularly when attempting to

estimate the radius or shape ratios of the asteroid.

More information is required for the filter to successfully

estimate these parameters. Two options to do so are

through additional optical methods to infer properties

such as the asteroid’s triaxial ellipsoid shape ratios and

differential imaging to determine velocity in order to

make the system observable in terms of shape estimation.

We are currently investigating these methods as the next

step in the algorithm’s development.

While the image generation method used for this

research is quick, generating each image at an average

rate of 0.3 seconds, it is still the computational restriction

for the numerical simulation. However, it would be useful

to conduct a comparative accuracy and computation cost

study between the accuracy of these images to existing

synthetic image generators to determine its reliability as

a basis to test the Lyapunov controller on.

The current approach to trajectory generation through

Lyapunov control has shown significant improvements,

but it is important to test it against a wider range of

scenarios with varying tuning parameters to determine

a more intuitive approach to adapting the controller to

any desired mission profile. Formulating an objective

function that analytically quantifies observability within

the Lyapunov controller rather than using a path

constraint could lead to even more robust and stable

performance. An additional avenue for investigation

is the OpNav measurement interval and how it may

affect the controller’s success rate. This may create

a baseline to design the spacecraft sensor such that

it may balance measurement cost and state estimate

accuracy. Additionally, the gain must be very precisely

tuned as asteroid environment requires precise control.

It is very sensitive and therefore highly susceptible to

minor changes in the gain or control profile. Potential

improvements to improve the algorithm include its
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adaptability to more elliptical asteroid bodies, refining

controller gain settings for different mission profiles, and

exploring additional optical methods to enhance shape

and state estimation simultaneously.

This method of using a horizon-based OpNav with

observability enhancing Lyapunov Control may offer a

more computationally efficient and autonomous option

for the early mission approach phase. It reduces the need

of human-in-the-loop OpNav since the spacecraft has the

ability to navigate itself to attain useful measurements

as it approaches the asteroid. Furthermore, it has

computation efficiency and accuracy advantages over

other OpNav methods for a wider range of observable

distances and angles. For example, while the natural

feature tracking offers better accuracy, this is appli-

cable at closer range, in lighting conditions where the

surface is visible and requires more computation time.

Meanwhile, LOS is limited in its accuracy compared to

the horizon-based method. However, the horizon-based

OpNav performance may be limited for highly elliptical

bodies. Lastly, it is important to note that this method

to use horizon-based OpNav with observability enhanced

maneuvers is not intended to fully replace the method-

ologies used in existing space missions. Rather, we offer

an additional method that is feasible to implement to

improve mission efficiency and safety. This is because

the observability enhancement ensures continuous and

reliable measurements at all stages of the mission while

within horizon-based OpNav range. Additionally, the

Lyapunov Control and state estimation algorithms

combined with the OpNav enable autonomy across the

early mission approach to close proximity phases of an

asteroid mission. There is potential for future work to

extend its applicability, improve performance in extreme

conditions, and develop more sophisticated state and

shape estimation methods. These improvements are

critical for expanding the system’s use in future deep

space exploration missions.

8 Conclusion. This research successfully demon-

strates a robust autonomous navigation and control

method for spacecraft approaching or conducting op-

erations in the vicinity of asteroids. A comprehensive

simulation environment is developed which considers

spacecraft dynamics around an asteroid, synthetic

asteroid imaging and processing, horizon-based OpNav,

EKF, and observability enhancing Lyapunov Control.

The novel contributions include the synthetic image

generation method which may be used to generate

reference images for other optical method tests, and a

Lyapunov Controller with path constraints to improve

horizon-based OpNav measurement observability. Its

effectiveness has been demonstrated by testing its sta-

bility when combined with EKF-based state estimation

within acceptable error bounds. The validation with

Bennu as a realistic benchmark highlights the reliable

test of its capabilities in this application. The system’s

robustness in varying scenarios, including near-linear

hyperbolic trajectories, flybys, and various orbit transfers

highlights its potential for broader applications in deep

space exploration.

9 Appendix A: Controller Gain Tuning Guide-

lines. Since the gains determined for the controllers for

this research are for a specific testcase with Bennu, it is

imperative to develop guidelines to derive it for different

scenarios to allow it to be used for diverse missions. After

investigating the relations between the gains and the con-

troller performance, the following observations and guide-

lines are made:

1. For the cartesian version of the Lyapunov controller,

the gain K1 = 0.01I6×6 is used. Each axis is as-

signed an equivalent gain in this case as each of them

exhibit identical significance to the control profile.

This value sets the magnitude of the gain in each

axes to the order of magnitude of the spacecraft’s

nondimensional position, which would vary depend-

ing on the system, trajectory and primary body.

This is a good starting point to tune the gain and

can be tweaked to be higher or lower depending on

the desired type of performance (e.g. underdamped,

critically damped or overdamped).

2. For the milankovitch version of the Lyapunov con-

troller, the base value used is found to be a gain of

10−3 where the gains in the angular momentum vec-

tor and eccentricity vector are tweaked to a different

ratio across varying axes depending on in which di-

rection the control is intended to be imparted. This

value seems to offer a critical balance and match with

a few orders of magnitude below the values of angular

momentum and eccentricity used in this research, al-

lowing precise changes. The eccentricity gains never

exceed the angular momentum, as this is found to

create unstable results.

3. The first gain is used to transfer from any arbitrary

incoming state to the FTO plane. Here, the angu-

lar momentum in the x direction has a higher gain,

and the eccentricity in the x and y directions have

lower gains. The intuition is that this allows the con-

troller to readily tweak the spacecraft’s position and

counter the effect of SRP. For a different application

where the dynamics is more balanced, this distinc-

tion in gain may not be required.

4. The second gain is used to transfer between FTOs.

Here, the eccentricity in the y and z direction is set

to a lower gain, which allows the controller to rapidly

adjust those parameters to attain a different altitude

while maintaining the spacecraft in the FTO plane.

Depending on the nature of the mission and target
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orbit, different axes can have modified gains to exe-

cute transfers within a desired plane.

Using these observations, this Lyapunov controller
formulation may be adapted for different use cases.
Results demonstrating the effectiveness of these gains
can be seen in section 6.2.
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