
UNCERTAINTY QUANTIFICATION OF A MACHINE LEARNING-BASED
POSE ESTIMATION MEASUREMENT MODEL
S. Anand Agrawal1†*, Brandon A. Jones2†, and Maruthi R. Akella 3†; 1Graduate Research Assistant, 2Associate

Professor, 3Professor, †(The University of Texas at Austin & 2617 Wichita St, Austin, TX 78712).
*[aagrawal66@utexas.edu]

Abstract. The deployment of Convolutional Neural

Networks (CNN s) within the Guidance, Navigation, &

Control (GN&C) suite can enable autonomous satellite

proximity operations. CNN s have been increasingly uti-

lized as measurement models in navigation filters for the

uncooperative spacecraft pose estimation problem. How-

ever, requirements for spaceworthy software may necessi-

tate a characterization of uncertainty in the CNN s. This

work quantifies the uncertainty of a Keypoint Regression

Network (KRN) in a pose estimation pipeline using Monte

Carlo Dropout (MCD) and analyzes the resulting effects

on the pipeline’s filtered pose estimates.

Introduction. Future satellite operations ranging

from debris removal1 and inspection to on-orbit servic-

ing2 and assembly3 have driven the need for robust and

autonomous space operations in close proximity. A pri-

mary requirement for continuous proximity operations is

determining the relative pose (position and orientation)

from a chaser to a target satellite with high accuracy.

These missions often involve a known non-cooperative

target, where the satellite of interest is not actively com-

municating or maneuvering to assist the servicing satel-

lite. Traditional feature-based approaches for this prob-

lem, which can perform poorly in the extreme lighting

conditions of space, have been supplanted by data-driven

methods that leverage deep neural networks, particularly

Convolutional Neural Networks (CNNs).4 Krizhevsky et

al.5 showed that deep CNNs—models with many layers

or trainable parameters—can perform object detection ef-

fectively when given sufficient data. Sharma et al.6 were

the first to apply this to spacecraft pose estimation by

training a CNN with synthetic imagery to both detect a

spacecraft and regress its pose. Subsequent works have

aimed at improving the performance gap between train-

ing on synthetic imagery and inferencing on more realistic

space imagery.7

Characterizing a CNN’s uncertainty is critical to adop-

tion of CNNs inside Guidance, Navigation, & Control

(GN&C) systems. There are two main sources of uncer-

tainty when modeling a process: epistemic and aleatoric.

Epistemic uncertainty originates from a lack of knowl-

edge of the process, which can be reduced by increasing

the amount of data or improving the underlying model

and its assumptions; aleatoric uncertainty is a byproduct

of the inherent randomness in the process.8 Predictive

or total uncertainty, the combination of epistemic and

aleatoric uncertainties, measures the model’s prediction

confidence with respect to the noise it can and cannot

explain.9 In learning-based spacecraft pose estimation,

training on spacecraft imagery that is well-lit may lead to

epistemic uncertainty when inferencing on images where

the target is poorly illuminated. Aleatoric uncertainty

can arise from both real and synthetic imagery from fac-

tors including image distortions (e.g., blur and glare) and

geometric variations in the target, primarily during syn-

thetic image generation in areas where its 3D model is

less detailed.

Quantifying the uncertainty of deep neural networks

remains an area of active research. Gal and Ghahra-

mani10 used dropout layers during training and infer-

encing to approximate a deep learning model’s epistemic

uncertainty, which is commonly referred to as dropout

variational inference or Monte Carlo Dropout (MCD).

Kendall and Cipolla11 approximated the posterior dis-

tribution of the weights to setup a Bayesian neural net-

work and performed MCD to estimate the epistemic un-

certainty in a direct pose regression CNN for large scale

outdoor scenes. Lakshminarayanan et al.12 trained mul-

tiple networks independently with adversarial learning to

produce an ensemble of predictions in which the predic-

tion variance can represent the ensemble’s epistemic and

aleatoric uncertainty. This method is referred to as en-

sembling. However, it may be computationally expensive

for image-based applications. In Kendall and Gal,13 a

per-sample Maximum A-Posteriori with MCD quantified

both aleatoric and epistemic uncertainty. Bramlage and

Karg14 performed deep evidential regression to estimate

both epistemic and aleatoric uncertainty for a human pose

regression problem.

These works and their applications have utilized

datasets that contain real data and are widely available.

However, spacecraft pose estimation networks lack a large

diversity of real imagery and there is limited treatment of

the uncertainty in these networks. Cassinis et al.15 lever-

aged the Gaussian kernel in heatmap regression to esti-

mate the (aleatoric) uncertainty of a keypoint regression

task for spacecraft pose estimation. Li et al.16 directly re-

gressed their model’s prediction uncertainty to filter key-

point predictions. To the author’s best knowledge, these

are the only examples of uncertainty quantification within

the data driven spacecraft pose estimation literature. In-

stead, this work prototypes an application of MCD that

adds epistemic uncertainty into a spacecraft pose estima-

tion CNN, quantifies that uncertainty and reevaluates it

in the context of a noisy measurement model, and demon-

strates the quantified uncertainty’s impact on a down-

stream estimation filter. In short, we present an appli-

cation of MCD to obtain an estimate of predictive un-

certainty in the CNN-based measurement model of our
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spacecraft pose estimation framework.

Background. We address the uncooperative known

spacecraft pose estimation problem for monocular im-

agery using the Cygnus Enhanced cargo resupply craft. A

real image of Cygnus is shown in Fig. 1, but the training

data as seen in Fig. 2 is entirely synthetic. The Cygnus

Body-fixed Frame (BFF) with origin at Ot and the cam-

era BFF with origin at Oc are defined in Fig. 3. The

camera BFF represents an imager onboard a chaser space-

craft. Pose estimation seeks to define the position vector

that extends from the camera to the target in the camera

frame, rcc→t, and the quaternion that defines the attitude

transformation from the camera BFF to the target BFF,

qt
c. Cygnus provides a useful and challenging target given

its symmetry about the xz and yz planes, which can lead

to rotational ambiguity. In a later section, we will refer

to the Cygnus left solar panel as the one in the positive

yt direction of the Cygnus BFF in Fig. 3. The right solar

panel is in the negative yt direction.

The pose estimation pipeline utilized in this work,

which will be referred to as the Vision pipeline for the

remainder of this paper, builds upon a three-step process

described in Refs. 17 & 18: a bounding box CNN to detect

and classify objects, a keypoint or landmark regression

CNN to determine the locations of the known keypoints

in an image, and a Perspective-n-Point (PnP) static pose

solver. Vision’s original implementation is established in

Ref. 19. Keypoints are points of interest on a target. For

example, a CubeSat spacecraft may have keypoints at its

vertices, which is the case with the Tango spacecraft from

SPEED+.18 Cygnus’ surface keypoints are sourced with a

sample elimination algorithm that generates Poisson disk

sample sets.20 This process creates uniformly spaced key-

points and 20 are used here. The projected (20) keypoints

in 2D for a synthetic image of Cygnus are displayed in

Fig. 2; spatial ambiguity or overlap in the keypoint lo-

cations is possible during projection. A Nonlinear Least-

Squares (NLS) static pose solver, which also calculates

the covariance for each solved pose, and a Multiplicative

Extended Kalman Filter (MEKF)21 to estimate the pose

over time have been included in Vision to field a naviga-

tion filter.22 The static pose solver takes predicted key-

point information in the form of azimuth and elevation

angles and uses the 2D-3D correspondence of these key-

points to provide an initial pose solution. The CNNs com-

bined with a static pose solver represents a measurement

model for the navigation filter, and the Vision overall ar-

chitecture is shown in Fig. 4. The MEKF dynamics and

the NLS measurement model are documented in Ref. 22,

and we will present modifications from this starting point.

In Ref. 22, the measurement model’s noise covariance

matrix is treated as a tuning parameter. We attempt

to characterize it with Monte Carlo Dropout. This can

be achieved by adding dropout layers to the Keypoint

Regression Network (KRN) in Fig. 4. A dropout layer

is a stochastic regularization technique9 that randomly

sets a fraction of the inputs into that layer to zero with

probability p for each forward pass of the network during

training. Such layers can be included for model regular-

ization, preventing overfitting by making the network less

dependent on any single input feature.23 During infer-

ence, dropout layers are turned off, leading to determinis-

tic outputs if the activation and weight functions are not

stochastic. In practice, MCD offers a means to approxi-

mate Bayesian inference without needing to fit probability

distributions over the weights. Alternatively, during in-

Figure 1. Real Image of Cygnus from the In-

ternational Space Station (Credit: NASA, De-

cember 2015)

Figure 2. Synthetic Cygnus with 20 2D Key-

points
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Figure 3. The Geometry of the Relative Pose Prob-

lem with Cygnus body-fixed frame, origin at Ot, and

the Camera body-fixed frame, origin at Oc

ference the dropout layers are kept online and predictions

are compiled for a desired amount of passes over the in-

put data. The empirical mean and standard deviation of

these samples can represent the model’s epistemic uncer-

tainty.10

In theory, MCD can be thought of as sampling the pos-

terior distribution of the predictions y∗, given the training

data, X and Y, and the new input, x∗: p (y∗ | x∗,X,Y).

To define this posterior, the posterior of the model’s pa-

rameters (network weights and biases) ω given the train-

ing data, X and Y, p(ω | X,Y) should also be defined.

Assuming the input training data are independent of the

model parameters, p(X | ω) = p(X), applying Bayes The-

orem and properties of conditional probability leads to

p(ω | X,Y) =
p(Y | X,ω)p(X | ω)p(ω)

p(Y | X)p(X)

=
p(Y | X,ω)p(ω)

p(Y | X)

(1)

The marginal likelihood is

p(Y | X) =

∫
p(Y | X,ω)p(ω)dω (2)

With marginalization, properties of conditional probabil-

ity, and assumptions on y∗ and x∗ the posterior distribu-

tion of y∗ is

p(y∗ | x∗,X,Y) =

∫
p(y∗,ω | x∗,X,Y)dω

=

∫
p(y∗ | ω,x∗,X,Y)p(ω | x∗,X,Y)dω

=

∫
p(y∗ | ω,x∗)p(ω | x∗,X,Y)dω

=

∫
p(y∗ | ω,x∗)p(ω | X,Y)dω

(3)

Model parameters are assumed to be independent of new

data x∗, and y∗ is conditionally independent of X and Y

because x∗ and ω are sufficient to characterize y∗. The

likelihood of the output given a particular model and in-

put, p(y∗ | ω,x∗), is an aleatoric source of uncertainty

because it accounts for noise in the data. The model pa-

rameter posterior distribution, p(ω | X,Y), is epistemic

in nature because it characterizes uncertainty due to lim-

ited knowledge.24 Substituting Eq. (1) and Eq. (2) into

Eq. (3), the posterior prediction distribution is

p(y∗ | x∗,X,Y) =

∫
p(y∗ | ω,x∗)p(Y | X,ω)p(ω)dω∫

p(Y | X,ω)p(ω)dω
(4)

Resolving or approximating Eq. (4) is key to uncer-

tainty quantification in neural networks. Its uncertainty

is referred to as the predictive uncertainty.9 Bayesian

Neural Networks (BNNs) approximate Eq. (4) by treat-

ing model parameters as random variables. The param-

eters have some proposed prior p(ω), and the likelihood

p(Y | X,ω) is determined given the data.25 Training a

BNN to learn p(ω | X,Y) is complex and often paired

with variational inference methods, which seek to mini-

mize the difference between an approximate distribution

and p(ω | X,Y). Gal and Ghahramani10 demonstrated

an equivalence between training a BNN with variational

inference and training a neural network with dropout.

They approximated Eq. (4) with samples generated by

inferencing with dropout activated (stochastic forward

passes through the network) and Bayesian approxima-

tion of Eq. (4) when treating Eq. (1) as Gaussian pro-

cesses. Their work provided a mathematical basis for

epistemic uncertainty estimation of deep neural networks

using MCD. The next paragraph will describe this process

in terms of the presented equations.

Training with dropout in the MCD framework approx-

imates p(ω | X,Y) from Eq. (1). Inferencing in MCD

samples a set of weights from p(ω | X,Y), and passing

a new input x∗ through the network provides a sample

of p(y∗ | ω,x∗). Repeating this process through mul-

tiple forward passes of the input effectively marginalizes

the model parameters ω from Eq. (3) and approximates

the integral in this equation. Thus, the empirical mean

and variance of the samples after multiple passes can be

approximated as the mean and variance of the posterior

prediction distribution p(y∗ | x∗,X,Y).

Methodology. This work replaces the separate object

detection and keypoint regression networks in Fig. 4 with

pytorch’s Keypoint Region-based Convolutional Neural

Network (Keypoint R-CNN)26 to learn object and key-

point detection simultaneously. Keypoint R-CNN drops

the mask prediction in Mask R-CNN,27 a model for object

detection and instance segmentation, and adds keypoint

detection.

Fig. 5 displays the information flow in Keypoint R-

CNN. Input images first encounter a feature extractor,

which produces feature maps at different resolutions. Fea-

ture maps, the outputs of convolutional layers in a neural
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Figure 4. Vision Pose Estimation Pipeline Architecture

network, capture edges, textures, and other features in

the data by applying filters known as kernels. These ker-

nels slide across the input matrix, performing convolution

operations (element-wise multiplications) on the overlap-

ping regions to extract features. The resulting feature

maps are handed to a Feature Pyramid Network (FPN)28

to create rich multi-scale feature maps. In short, this pro-

cess helps the model learn an object at different sizes.

The feature extractor with the FPN are referred to as the

model backbone. A Region Proposal Network (RPN)29

takes the multi-scale feature maps and generates bound-

ing boxes, also referred to as region proposals, that could

contain objects. Both the proposals and the multi-scale

feature maps are then fed into a Region of Interest Align

(RoI Align) block. Here, the bounding boxes crop the fea-

ture maps. Proposal sizes typically dictate whether lower

or higher resolution maps are cropped. For example, the

RoI Align tends to select a lower resolution feature map

for a larger region proposal and higher resolution feature

maps for smaller region proposals. The cropped regions

will be resampled to a fixed size to be fed into the bound-

ing box and keypoint heads. Each head performs ad-

ditional processing before handing off to a box predictor

and keypoint predictor. The box predictor, which consists

of two fully connected layers, classifies detected objects’

classes and regresses their bounding box coordinates. The

keypoint predictor, which consists of a transposed convo-

lution layer that performs upsampling, regresses each de-

tected object’s keypoint locations. Detailed descriptions

of Keypoint R-CNN components can be found in Ref. 30.

Note, the model structure implemented in pytorch will

not exactly mimic Fig. 5. For example, the bounding box

and keypoints heads and predictors are nested inside the

RoI Align head.

The deployability of Vision to low Size, Weight, Power,

and Cost (SWaP-C) platforms for future operations ne-

cessitated several modifications: the feature extractor

was changed from ResNet-5031 to MobileNetv3,32 the

FPN was modified to adjust to the feature maps of Mo-

bileNetv3, and the fully connected layers in the bounding

box head were replaced with depthwise separable convo-

lutions.33 The custom Keypoint R-CNN has 8.52 million

trainable parameters and is 85% smaller than its standard

implementation in pytorch.

As no dropout layers exist in the default Key-

point R-CNN, they are added to the end of each

Conv2dNormActivation block in the feature extractor,

FPN, RPN, bounding box head, and keypoint head; each

of these five areas respectively has a single prescribed

dropout probability and as whole they are denoted as

p = {p1, p2, p3, p4, p5}. Dropout layers are not added

to the bounding box and keypoint predictors to avoid

regularization in the output predictions of the network.

Blocks with dropout are indicated with a diamond in

Fig. 5. A total of 51 dropout layers are placed in Key-

point R-CNN, and their inclusion does not add trainable

parameters to the network. The placement of dropout

layers inside Conv2dNormActivation blocks is convenient

and preserves regularization while maintaining meaning-

ful feature extraction. Conv2dNormActivation is a com-

posite block structure common in deep learning models

that efficiently packages a 2D convolution layer that ap-

plies a convolutional filter to an input, a normalization

layer that normalizes the output, and an activation layer

that introduces non-linearity to the normalized output.

The dropout layer probability distribution is the stan-

dard Bernoulli distribution with probability p, which is

pictured in Fig. 6. In Fig. 6, if q = .2 and xn = 100,
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one would expect approximately 20 input neurons to be

zeroed out on any given pass of information from the in-

put to the output layers. Dropout probability is a tuning

parameter, and placing dropout layers within a network

architecture often requires domain knowledge and exper-

imentation. The randomness introduced by the dropout

layers during training allows the model to update its pa-

rameters based on incomplete information, in effect in-

jecting a controlled form of uncertainty into the model.

x1 x2 . . . xn+1

δ1 δ2 δnδb . . .

y

δk =

{
0, q = 1− p

1, p

Figure 6. Visualizing Dropout Layers with

a Bernoulli Distribution, graphic adopted from

Ref. 34.

In training, Keypoint R-CNN consumes the input im-

ages as a normalized tensor, the object classes, the truth

bounding boxes, and the truth keypoints. In inference,

Keypoint R-CNN consumes an input image and returns

predicted bounding boxes, keypoints, and class labels

along with measures of the model’s relative confidence in

its predictions. We train Keypoint R-CNN on 11,000 syn-

thetic images of Cygnus generated in Blender, an open-

source 3D computer graphics software, with varying back-

grounds, orientations, sizes, and color gradients. There is

a single Cygnus object in each image. Keypoint R-CNN

learns to propose a Region of Interest (RoI) that may

contain an object, classify the object, and simultaneously

predict bounding box and keypoint coordinates within the

RoI. A multi-task loss function that combines losses for

object detection (classification and bounding box regres-

sion) and keypoint regression is deployed to allow the net-

work to learn both object localization and keypoint pre-

diction simultaneously. We exploit the albumentations35

package to increase the domain randomization of the

training data, by applying random transformations with

some prescribed probability. These augmentations in-

clude brightness and contrast changes, the addition of sun

flares, creating motion blur, and adding Gaussian noise.

The NLS in the Vision pipeline requires a transforma-

tion from keypoints in pixel coordinates to azimuth and

elevation angles in radians. All training and inference im-

agery currently share the same camera sensor with a fo-

cal length of 50 millimeters (mm), image sensor size of 36

mm (width) x 24 mm (height) with square pixels, and an

output image resolution of 512 x 512 pixels (height h by

width w). The transformation involves shifting the key-

points from the image coordinate system (with the origin

at the top-left corner) to the camera coordinate system

(with the origin at the center of the image) and normal-

izing by the focal length in pixels, fpx. For n keypoints

of the form nj(x, y) where j ∈ {1, 2 . . . n} and N signi-

fies the entire set of keypoints, we have N ∈ Rn×2 (e.g.,

n = 20, N ∈ R20×2). The corresponding set in angle

space is Θ. The transformation for the jth keypoint from

pixel coordinates (xj , yj) to azimuth (αj) and elevation

(βj) angles is

αj = arctan2

(
xj − 1

2w

fpx
, 1

)
βj = arctan2

(
yj − 1

2h

fpx
, 1

) (5)

The transformation of a variable gN , which contains n 2D

keypoints in (x, y) pixel coordinates, to gΘ, representing

the corresponding set of n azimuth (α) and elevation (β)
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angles, is represented by the F operator and given by

gΘ = F (gN )

=

[
arctan2

(
gN{j,1} − 1

2w

fpx
, 1

)
,

arctan2

(
gN{j,2} − 1

2h

fpx
, 1

)]n
j=1

, gΘ ∈ Rn×2

(6)

The {j, 1} and {j, 2} notation indicates indexing into the

first and second dimensions of gN , respectively. No un-

certainties from the camera parameters are considered for

subsequent MCD analyses.

Performance Metrics. This Monte Carlo Dropout

study consists of selecting I images from an unseen test

dataset, activating the model’s dropout layers during in-

ference, predicting the bounding box and the n keypoint

pixel locations from the input images, and compiling these

predictions for T trials. Cygnus’ pose, scale, occlusion,

and visual distortion, such as blur and glare, change from

image to image along with the backgrounds. It should

be noted that limiting the MCD trials to a single image

may underestimate the uncertainty of the model because

it will not account for a diversity of pose information in

a target dataset. The model’s uncertainty can be gauged

from both prediction and error statistics.

Prediction statistics reflect the model’s internal vari-

ability and are aggregated across the keypoints, trials,

and images. The keypoint predictions, y
∗(i,t)
N , are tracked

across the images and trials. The mean prediction for the

keypoints, µN , is

µN =
1

I · T

I∑
i=1

T∑
t=1

y
∗(i,t)
N , µN ∈ Rn×2 (7)

Eq. (7) is used in Eq. (8), but it does not offer sig-

nificant insights for keypoint regression, notably when

the target orientation is changing from image to image

(I > 1). The prediction variance Σ quantifies the dis-

tribution or variability of the predictions and is a mea-

sure of the model’s epistemic uncertainty. This spread is

the uncertainty in the model weights, and it represents

the model’s confidence in its predictions given its train-

ing.36 Viewing the prediction variance in this manner

is straightforward when considering a single input with

multiple forward passes (I = 1 , T > 1). If predicting on

out-of-distribution data such as real imagery of Cygnus,

a high prediction standard deviation reflects the model’s

limited knowledge. The shorthand (∼) is employed to de-

note that the preceding term in parentheses is repeated.

The standard deviation at each keypoint is computed as

σN =

√√√√ 1

I · T

I∑
i=1

T∑
t=1

(
y
∗(i,t)
N − µN

)◦2
, σN ∈ Rn×2

(8)

Element by element operations are notated with the ◦2
symbol. The spread in the predictions σN across the x

and y dimensions is calculated as

σx =
1

n

n∑
j=1

σN{j,1} , σy =
1

n

n∑
j=1

σN{j,2} (9)

Reducing the standard deviation in this manner is neces-

sary to populate Vision’s static pose solver with a mea-

surement noise matrix. The corresponding prediction

quantities in the angle space are:

µΘ = F (µN ) , µΘ ∈ Rn×2 (10)

σΘ = F (σN ) , σΘ ∈ Rn×2 (11)

σα = F (σx) , σβ = F (σy) (12)

The measurement model for the Vision MEKF assumes

additive noise modeled as a white Gaussian sequence:

z = h(x) + ϵ where z is the measurement, h(·) is the

measurement mapping, x is the state, and ϵ is noise.22

The measurement covariance matrix of this measurement

model is R. When deploying a dropout-infused Keypoint

R-CNN in practice, its measurement error is not additive

and more closely modeled by h(x, ϵ) because the infer-

ence is deterministic since the dropout layers are turned

off. This inconsistency will be handled in future work,

and the quantified uncertainty is treated as additive here.

Thus, the calculation of the first and second moments is

assumed to be sufficient to model the Gaussian measure-

ment noise. Furthermore, computing error metrics in our

MCD analysis is possible because the inferencing imagery

is synthetic and labeled.

We leverage the injection of uncertainty into Keypoint

R-CNN from MCD to reframe the uncertainty quantifica-

tion in terms of measurement noise. While many methods

exist to estimate an unknown measurement covariance

matrix within a filtering framework,37 we implement a

naive error analysis assuming the measurement noise is

Gaussian and computing the error mean and covariance

from a collection of measurements. This is an attempt

to approximate the predictive uncertainty of Keypoint R-

CNN, which as shown in Eq. (3) contains both aleatoric

and epistemic uncertainties. Error for the ith image and

tth trial at the N keypoint set is

ỹ
(i,t)
N = yi

N − y
∗(i,t)
N

(13)

The mean error across the images, trials, and keypoints

estimates is

µ̃N =
1

I · T

I∑
i=1

T∑
t=1

ỹ
(i,t)
N , µ̃N ∈ Rn×2 (14)

Eq. (14) is an estimate of the bias in the system. To con-

form to the white Gaussian noise assumption of the Vi-

sion filter, the bias is expected to be zero mean. Non-zero

values at specific keypoints may indicate a lack of diver-

sity in the training imagery or suggest improper learning

by Keypoint R-CNN. The mean bias across the x and y

dimensions is

µ̃x =
1

n

n∑
j=1

µ̃N{j,1}
, µ̃y =

1

n

n∑
j=1

µ̃N{j,2} (15)
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Error covariance is Σ̃ and the corresponding standard de-

viation is

σ̃N =

√√√√ 1

I · T

I∑
i=1

T∑
t=1

(
ỹ
(i,t)
N − µ̃N

)◦2
, σ̃N ∈ Rn×2

(16)

Eq. (16) is an estimate of the measurement noise standard

deviation at each keypoint. With Eq. (16), visualizing a

model’s quantified uncertainty is possible by treating the

standard deviation’s first and second dimensions as the

semi-major and semi-minor axes of an error ellipse cen-

tered about each keypoint prediction. This style of visu-

alization is shown in Figs. 7 & 8 where the error ellipses

are yellow and centered about each red prediction. Again,

it is useful to reduce σ̃N to scalar values:

σ̃x =
1

n

n∑
j=1

σ̃N{j,1} , σ̃y =
1

n

n∑
j=1

σ̃N{j,2} (17)

The measurement model covariance matrix can be defined

with Eq. (17) as R = diag [σ̃x, σ̃y]. The corresponding

angle space error statistics are:

µ̃Θ = F (µ̃N ) , µ̃Θ ∈ Rn×2 (18)

σ̃Θ = F (σ̃N ) , σ̃Θ ∈ Rn×2 (19)

σ̃α = F (σ̃x) , σ̃β = F (σ̃y) (20)

Root mean square error gauges overall prediction er-

ror for the dropout regularized Keypoint R-CNN in pixel

coordinates:

RMSE =

√√√√ 1

n · I · T

n∑
j=1

I∑
i=1

T∑
t=1

(
ỹ
(i,t)
N

)⊤ (
∼
)

(21)

The angle space equivalent is

RMSEΘ =

√√√√ 1

n · I · T

n∑
j=1

I∑
i=1

T∑
t=1

(
F
[
ỹ
(i,t)
N

])⊤ (
∼
)
(22)

Though not presented here, this uncertainty quantifica-

tion framework can be extended to the bounding box re-

gression outputs.

Results. Generally, MCD is performed on a single in-

put with T forward passes, but quantifying measurement

model noise requires a diverse set of poses and hence

images. The 250 images used for the MCD study were

taken from a dataset excluded from training that con-

tains smooth relative pose trajectories. A subset of these

trajectories are employed to assess the Vision filter perfor-

mance after predictive uncertainty quantification. Monte

Carlo Dropout is an input-specific method (see Eq. (3)):

the uncertainty quantification is related to the specific in-

put(s). Care should be taken to ensure the inputs for a

Monte Carlo Dropout (MCD) study are representative of

those expected during inference. In addition, MCD anal-

yses may serve as a poor approximation of uncertainty

when the inference imagery is considered significantly

different from the training imagery (out-of-distribution

data).

Four trained dropout configurations including the zero

dropout baseline model are discussed in this section.

Table 1 displays the prediction and error statics for

the multiple image case of these models. For the zero

dropout baseline, the predictions are deterministic and

their variances, σx and σy, arise from the diversity of

Cygnus orientations in the 250 images. Different orien-

tations leads to different sets of keypoint locations for

each image. Therefore, the prediction variance mea-

sures how the model’s predictions vary across the im-

ages rather than model parameter uncertainty. This vari-

ability is an indirect measure of aleatoric uncertainty in

the MCD imagery. The prediction standard deviations

for p = {0, 0, 0, 0.025, 0.025} and p = {0, 0, 0, 0, 0.05}
are marginally smaller or equivalent to the baseline, and

the high dropout version, p = {0.1, 0.1, 0.1, 0.05, 0.05}
is marginally higher than the baseline. Such behavior

implies the models may be robust to dropout-induced

stochasticity with low amounts of epistemic uncertainty

in the aggregate. Homogeneity in the 250 MCD images or

insufficiently challenging training data may be responsible

for these effects.

Table 1. MCD Prediction and Error Metrics in

Pixels for Keypoint R-CNN Dropout configurations

when I = 250 and T = 300

Dropout (p) σx σy σ̃x σ̃y RMSE
{0, 0, 0, 0, 0} 61.7 90.8 16.6 17.0 20.8

{0, 0, 0, 0.025, 0.025} 61.5 90.7 9.4 9.6 11.5
{0, 0, 0, 0, 0.05} 61.4 90.8 11.2 13.7 15.1

{0.1, 0.1, 0.1, 0.05, 0.05} 61.9 91.6 24.5 25.1 28.6

Table 2 provides a clearer indication of how dropout

affects model performance. Results in this table are

for a single image with multiple stochastic passes. In-

creases in dropout lead to increases in the prediction

variances, which indicate increased epistemic uncertainty.

Dropout regularization is useful as it decreases the RMSE

over the baseline for the p = {0, 0, 0, 0.025, 0.025} and

p = {0, 0, 0, 0, 0.05} variants. Including dropout within

the feature extractor and FPN layers had adverse effects

on model accuracy and uncertainty. The prediction and

error statistics for the p = {0.1, 0.1, 0.1, 0.05, 0.05} model

are higher than the other dropout configurations includ-

ing the baseline. Dropout regularization is ineffective in

the backbone layers because it can lead to the loss of im-

portant features, hindering a model’s ability to learn data

intricacies. Notice the prediction and error standard de-

viations are the same for a given dropout configuration in

Table 2. For a single image, this behavior confirms that

the observed prediction variance is entirely driven by epis-

temic uncertainty added via dropout. Dropout-induced

epistemic uncertainty does not introduce systematic bias,

resulting in a balanced spread around the truth keypoints.

Consequently, the model’s confidence in its predictions
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mirrors its true performance, indicating a well-calibrated

model.

Table 2. MCD Prediction and Error Metrics in

Pixels for Keypoint R-CNN Dropout configurations

when I = 1 and T = 300

Dropout (p) σx σy σ̃x σ̃y RMSE
{0, 0, 0, 0, 0} 0.0 0.0 0.0 0.0 16.6

{0, 0, 0, 0.025, 0.025} 3.1 0.8 3.1 0.8 6.8
{0, 0, 0, 0, 0.05} 4.4 1.8 4.4 1.8 7.8

{0.1, 0.1, 0.1, 0.05, 0.05} 14.7 8.0 14.7 8.0 27.1

For MCD analyses with many images, aleatoric uncer-

tainty affects the results because the input data has vari-

ability. The comparable error standard deviations, σ̃x
and σ̃y, in Tables 1 & 2 are higher when the analysis

has more imagery, suggesting MCD underestimates pre-

dictive uncertainty. The mean biases (see Eq. (15) ) of the

p = {0, 0, 0, 0.025, 0.025} and p = {0, 0, 0, 0, 0.05} models

were less than a pixel, suggesting their CNN measure-

ment model inputs are unbiased. The non-zero dropout

models (e.g., p = {0.1, 0.1, 0.1, 0.05, 0.05}) had non-zero

biases and its error uncertainties were higher than the the

baseline.

The model trained only with a 5% dropout in the key-

point head, p = {0.00, 0.00, 0.00, 0.00, 0.05}, reached az-

imuth and elevation angle standard deviations close to

one degree, see Table 3. This was near the default 1 de-

gree measurement standard deviation for the MEKF be-

fore tuning. Limiting dropout to the keypoint head was

more practical, and we’re primarily interested in uncer-

tainty quantification in keypoint regression over bound-

ing box regression. Future exploration will investigate

the interplay between dropout in the RPN, the bound-

ing box head, and the keypoint head. The bias for the

5% configuration is zero mean in the azimuth and eleva-

tion space, and the uncertainty for a given keypoint loca-

tion is around 12 pixels in either direction. Figs. 7 & 8

compare the predictive uncertainty estimates for the p =

{0.1, 0.1, 0.1, 0.05, 0.05} and p = {0, 0, 0, 0, 0.05} models.

The error ellipses in both figures are σ̃N , Eq. (16), of

each model centered about their respective deterministic

keypoint predictions. Larger ellipses imply higher pre-

dictive uncertainty for a given keypoint. Uncertainty in

solar panel keypoint locations is more pronounced for the

model with dropout in the backbone. As the solar pan-

els are thin and have complex patterns and details (see

Figs. 1 & 2), dropout in the backbone may lose impor-

tant aspects of these features. Fig. 8 hints that the solar

panel keypoints are difficult to learn because they exhibit

higher uncertainties relative to other keypoints even when

the model performs more accurate inference. The back-

bone dropout model (p = {0.1, 0.1, 0.1, 0.05, 0.05}) also

has worse predictions because some green truth keypoints

are not encompassed by their respective red open circle

predictions.

Table 3. Error Statistics for a Model with Dropout

p = {0, 0, 0, 0, 0.05}
µ̃x µ̃y σ̃x σ̃y

0.18 px 0.41 px 11.16 px 13.71 px

µ̃α µ̃β σ̃α σ̃β
0.01◦ 0.03◦ 0.89◦ 1.08◦

Table 4 displays σ̃N and σ̃Θ, and it is helpful to look

at predictive uncertainty across the keypoint locations to

see which keypoints are noisy. Estimates of the 1st, 5th,

Figure 7. Projected Truth (Green) vs Infer-

enced (Red) Keypoints with Yellow Error El-

lipses from σ̃N for p = {0.1, 0.1, 0.1, 0.05, 0.05}

Figure 8. Projected Truth (Green) vs Infer-

enced (Red) Keypoints with Yellow Error El-

lipses from σ̃N for p = {0, 0, 0, 0, 0.05}
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Table 4. Error Standard Deviations for the 20 Key-

points in Pixels and Degrees After T = 300 Passes

and I = 250 Images (512 pixels x 512 pixels) with

Dropout p ={0, 0, 0, 0, 0.05}
j σ̃Nj,1

σ̃Nj,2
σ̃Θj,1

σ̃Θj,2

1 19.14 32.17 1.52 2.52

2 6.31 5.77 0.50 0.46

3 7.47 8.24 0.59 0.65

4 9.71 14.60 0.76 1.15

5 18.71 16.67 1.50 1.31

6 5.86 5.34 0.47 0.43

7 6.22 7.65 0.50 0.60

8 6.55 11.31 0.52 0.89

9 22.65 28.74 1.78 2.28

10 7.91 9.30 0.63 0.73

11 9.48 8.27 0.76 0.66

12 5.43 5.20 0.43 0.41

13 9.06 8.11 0.72 0.64

14 3.87 6.07 0.31 0.48

15 33.73 35.61 2.68 2.80

16 18.54 19.22 1.46 1.52

17 3.93 7.94 0.31 0.63

18 8.61 17.49 0.68 1.38

19 8.10 6.43 0.65 0.51

20 11.99 20.03 0.95 1.58

Means σx σy σα σβ
- 11.16 13.71 0.89 1.08

9th, 15th, and 16th keypoints are more uncertain than the

others. Results from the models in Table 1 reaffirm this

pattern, signaling potential bias in the training data in

terms of solar panel views, too little training time, and

a need for more model parameters. The 1st, 5th, and

15th keypoints are on the left solar panel, and the 9th

and 16th keypoints are on the right solar panel. Their

locations are away from the cylindrical base of Cygnus,

towards the edge of the solar panels. Ideally, when vi-

sualizing measurement model performance in the context

of Figs. 7 & 8, the red hollow circles should encompass

the green truth circles or contain the green truth circles

within their error ellipses. This is the circumstance for

the p = {0, 0, 0, 0, 0.05} Keypoint R-CNN model, and the

prediction for the 15th keypoint in Fig. 8 (red circle at

the top of the figure) is not directly proximal to its truth

location but its error ellipse covers it. Changing the MCD

images still leads to similar levels of high uncertainty in

the same keypoints, and future investigations of this non-

uniformity and noise concentration in the solar panel key-

points is warranted.

Approximating the predictive uncertainty with the er-

ror metrics can help gauge network performance. A well-

trained network should maintain consistent azimuth and

elevation angle standard deviations across out-of-domain

datasets where the trained model is expected to have rea-

sonable ability to infer outside the training data (induc-

tive bias). Later studies adding real images of Cygnus to

the MCD analyses will directly address this idea. A sta-

tistically consistent filter with a quantified measurement

noise can also indicate a well-trained Keypoint R-CNN

model. After integrating the Keypoint R-CNN model

with p = {0.00, 0.00, 0.00, 0.00, 0.05} and its quantified

uncertainty into the NLS, a parametric study using the

trajectory image sets is undertaken to examine filter con-

sistency. This is not a Monte Carlo simulation as the

initial conditions nor truth are randomly perturbed; we

have set aside distinct trajectories to undertake the study.

Note, the attitude error is given by the Gibbs error quater-

nion, δqg = δqv

δq0
.

Figure 9. Parametric Study of Translation Error

for 25 Image Trajectories

The parametric studies for both attitude and trans-

lation involve 25 trajectories and compare the filter’s

three sigma bound—representing its confidence in its

estimates—with the parametric study’s three sigma

bound—an empirical measure of uncertainty based on the

samples. The trajectories vary the initial pose, its propa-

gation, and the space background. In Figs. 9 & 10 the fil-

ter tends to gain or maintain confidence over time, accept-

ing most measurements from Keypoint R-CNN and the

NLS. Notice that with limited trajectories the parametric

study has error concentrated near the zero mean lines in

both figures. Some measurements may be rejected due to

large changes in attitude between the filter estimate and

the measurement or large translation or attitude mean in-

novations relative to the filter’s confidence bounds. Mea-

surement rejection indicates a poor inference. The uncer-

tainty bounds for the sample error in Fig. 9 track well with

the x and y translation direction but less so with the z

direction, which sees the filter becomes less confident over

time. This may be explained by the difficulty in estimat-

ing depth information from 2D monocular imagery. In
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Figure 10. Parametric Study of Gibbs Quaternion

Error for 25 Image Trajectories

the attitude example, Fig. 10 shows tighter mean filter

three sigma bounds over the sample error bounds, sug-

gesting that we could be underestimating the predictive

uncertainty with our MCD method. The blue errors lines

stray past the filter bounds at higher frequency than in

translation, alluding to higher uncertainty in attitude es-

timation. Additional tuning with process noise may alle-

viate the underestimation of uncertainty, but there might

not be enough trajectories to fully explore the parametric

study. Overall, the filter appears consistent but additional

research is needed.

Future Work. In future work, several areas will be

reexamined, and new topics will be probed based on this

work’s findings. The navigation filter’s assumption of a

white Gaussian measurement noise and the non-additive

nature of the regularized Keypoint R-CNN should be rec-

onciled. Also, the prediction data used for MCD will be

expanded to include real Cygnus imagery to investigate

the aleatoric uncertainty that the model will encounter

and SPEED+38 imagery for comparison. Furthermore,

adopting or developing a means to separately quantify

the epistemic and aleatoric uncertainty in the system is

crucial to further scrutinize our process of predictive un-

certainty quantification. Our implementation of MCD for

keypoint regression is tuning intensive25 and exploring an

analytical or numerical upper bound to the uncertainty

may better inform the dropout design process. Adopting

dropblocks as in Yelleni et al.39 may warrant further con-

sideration because these layers preserve spatial continuity.

The dropblocks drop contiguous regions of feature maps

instead of individual neurons. We will seek new methods

to explore and limit uncertainty in the solar panel key-

points. Finally, a proper Monte Carlo study of this result

will be pursued and involves defining a prior pose distri-

bution determined from the pose distribution of both the

training and (expected) inferencing imagery. This will

require additional Blender development to dynamically

generate the space of initial poses and their resulting tra-

jectories.

Conclusion. We have applied the Monte Carlo

Dropout method to inject uncertainty into a keypoint re-

gression CNN that provides measurements to a pose esti-

mation filter. A systematic approach to adding dropout

layers to specific components of a model has been pre-

sented along with keypoint regression-centric equations

for quantifying that uncertainty and extending the un-

certainty quantification towards predictive uncertainty. A

MCD analysis visualizing and evaluating the uncertainty

has been showcased for trained Keypoint R-CNN mod-

els. Filter consistency analysis has been performed to

demonstrate that the quantified uncertainty leads to a rel-

atively consistent filter in the translation states but less

so in the attitude states. Future work will directly con-

sider aleatoric aspects of uncertainty, address restrictive

assumptions, and develop additional capabilities.
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