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Abstract. Autonomous navigation and timing in

the cislunar regime is challenging due to the lack of

satellite-based navigation, but imaging of lunar terrain

allows for the extraction of positioning information.

This paper presents recent advancements in a Crater

Navigation and Timing (CNT) algorithm capable of

autonomously determining the state of a satellite.

Improvements to both the generation of simulated imagery

through a crater template-based method and the navigation

filter through the addition of measurement bias estimation

and nonlinear process noise are displayed. Results of

Monte Carlo tests evidence successful state, time and

measurement bias estimation.

Introduction. Operations in the Cislunar regime

are of interest to NASA, the DoD, and commercial

entities, but the lack of satellite-based navigation makes

autonomous navigation difficult. The most readily

available positioning information comes from the lunar

terrain, or more specifically, craters. The Crater

Navigation and Timing (CNT) algorithm seeks to use

camera images of craters in order to autonomously

determine the translation state in lunar orbit.

Algorithms for crater-based terrain relative navigation

in the lunar environment have been developed.1 Previous

methods include fast Fourier transforms (FFTs), shadow

modeling and pixel intensity thresholding, but they are

limited by geometric and lighting constraints such as

crater shape and shadowing. The CNT algorithm uses a

machine learning (ML)-based detector, which may relieve

the algorithm of most geometric and lighting constraints

through the training data. ML-based detectors have

been used by others as well2,3 with a focus on the lunar

landing problem. The CNT algorithm does not attempt

to solve the landing problem, rather it enables orbital

operations in Low Lunar Orbit (LLO). While the two

problems share many aspects, challenges specific to the

orbit problem include the necessity to process images at

a higher altitude, regular periods of full shadow that do

not provide usable imagery, and estimation in the inertial

frame rather than the fixed frame. This paper will address

improvements made to the CNT algorithm which was

presented previously.4

The paper will cover changes made to the image

generation and processing and changes to the crater

identification and measurement model to account for

measurement bias and process noise. The most significant

changes to the filter are the addition of the estimation

of the measurement bias and the choice to represent

the measurements in pixel space rather than by bearing

angles. The former of the two changes is motivated

by the bias evidenced in the previous paper4 when

using the Lunar Reconnaissance Orbiter Camera (LROC)

mosaics and the expected necessity for measurement

bias estimation in operation. The bias in the LROC

mosaics also motivated the use of the template-based

image generation. The latter of the changes is due to

the increased nonlinearity that comes with representing

measurements in angles rather than in pixels. The

paper will also show the filter performance of the

fully integrated algorithm with the changes previously

mentioned implemented. The goal for the algorithm

performance is to obtain a position error and time error

of less than 100 meters per axis and 100 milliseconds,

respectively. To evidence progress towards this goal,

two Monte Carlo (MC) tests are provided with images

in-the-loop and two tests with simulated measurements.

Additionally, the mean and standard deviation of the

RMS error of nine tests with simulated detections are

provided. Some initial results processing images taken

by LROC through the detector are presented, while full

processing of LROC images through the CNT algorithm

is left to future work.

The paper will be organized as follows. First, the

implementation of the algorithm will be discussed. This

is followed by a description of the template-based image

generation process. The test case generation process and

a discussion of results are next. Finally, the future work

and conclusions are described.

Implementation. The CNT algorithm is split into

four parts: crater detections, crater identification,

spacecraft state estimation and time estimation using

ground-based ephemeris solutions. The position

estimation first requires the processing of images through

the Mask R-CNN algorithm in order to obtain crater

positions in the camera frame. This is followed by

the identification of craters using the 2018 Robbins

Lunar Crater Catalog.5 Finally, the measurements, that

correspond to identified craters, are fed into an Extended

Kalman Filter (EKF) where the state (position, velocity

and measurement bias) is estimated. The EKF includes

nonlinear propagation of the process noise transition

matrix (PNTM) and estimation of any measurement

biases. The time bias is determined through a least

squares fit to estimate the time that minimizes the

deviations of the navigation solution with a ground based

ephemeris.

Crater Detection. The crater detection method used in

this work extends the implementation of the Mask R-CNN

model presented previously.4,6 Based on training samples

generated from the LROC global maps, the detector is

able to handle images with a variable number of craters
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in the field of view. While the detector model was

built using PyTorch,7 the conversion to an Open Neural

Network Exchange (ONNX) model interface8 enables

integrated tests with the C++ implementation of the

CNT workflow. Through the tools built for model

conversion between PyTorch and ONNX, the detector

model can be configured to handle different sized images

which enables the use of other datasets for CNT testing.

Local Crater Catalog Generation and Identification. In

order for detections to be used within the navigation filter

their approximate locations on the Moon surface must be

known, which is provided by the crater catalog.5 The

catalog is initially truncated based on crater size, which

is determined by the smallest expected crater that the

satellite will be able to distinguish. This is based on

the maximum/minimum orbit altitude and the camera

resolution. Given the initial truncated database, a local

catalog is calculated at each time in which measurements

are received based on the field of view (FOV) of the

spacecraft. The identification is then done through

the Global Nearest Neighbor (GNN) approach via the

Hungarian Matching algorithm. This approach finds the

solution to

π̂ = argmin
π∈Π

[
n∑

i=1

min (c, C(i, π(i)))

]
, (1)

where c is the cutoff value for assignment, which is chosen

by the user, Π is the set of all assignments,

C(i, j) = ∥d(i, j)∥2 = ∥rdetected(i)− rcatalog(j)∥2, (2)

i = 1 : n, j = 1 : m, rdetected is the position of a detected

crater and rcatalog is the position of a crater in the local

catalog. The addition of a bias on the measurements

leaves the algorithm susceptible to false identification

of craters. In order to combat this, two reasonable

precautionary steps are taken before performing the

identification. First, the Euclidean distance is taken

between all measured craters, and if two craters are within

a selected cutoff distance, then one of them is discarded.

Additionally, the estimated bias output from the filter

is subtracted from all the detections before matching is

done. The alteration of the detection is only done within

the matching algorithm. The detections which are passed

into the filter are unaltered.

Measurement Model. The camera measurements are

defined in the pixel space such that

h(x, y, z) =
[x
z
+ bx

y

z
+ by

]T
, (3)

where x, y and z are components of the vector from

the camera to the surface feature in the camera (CAM)

frame and bx and by are the measurement bias in pixel

space. Figure 1 shows the camera view of the craters

as well as the axes for the camera frame. The camera

frame corresponds to the North, East, Down (NED)

frame in the current framework but the CNT algorithm

Figure 1. Camera Axes

allows for other attitude representations. The bias is

currently assumed to be random and fixed but the model

for the bias can easily be changed since the algorithm

is implemented in an object-oriented framework. The

partials in terms of the position of the surface feature

are

∂h

∂
[
rCAM
sf

]
CAM

=

1

z
0 − x

z2

0
1

z
− y

z2

 , (4)

where
[
rCAM
sf

]
CAM

is the position of the surface feature

in the camera frame. Finally, the partials are transformed

into the Moon-Centered Inertial (MCI) frame,

∂h

∂ [rorb]MCI

=
∂h

∂
[
rCAM
sf

]
CAM

∂
[
rsf

]
MCI

∂ [rorb]MCI

=
∂h

∂
[
rCAM
sf

]
CAM

∗ TCAM
MCI ,

(5)

where [rorb]MCI is the orbital position of the vehicle in

the MCI frame and TCAM
MCI is the transformation matrix

from the camera frame to MCI. The final measurement

matrix is

H =

[
∂h

∂ [rorb]MCI

02x3 I2x2

]
. (6)

Measurement Prediction and Update. The

measurement update uses the EKF equations to update

the state deviation resulting from each measurement at

each time. All the measurements at a time are processed

one at a time. Additionally, during each measurement

update, measurement editing is performed to ensure

that the measurements are statistically consistent with

a chi-squared distribution with two degrees of freedom.

The measurement editing is performed by calculating the

squared Mahalanobis distance,

m2
r = ∆zT

k (P
T
k )∆zk, (7)
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where ∆zk is the measurement residual and Pk is

the innovations covariance.9 The measurements are

discarded if their squared Mahalanobis distance exceeds

the chi-squared value corresponding to 95%, which is

5.9915 for a distribution with two degrees of freedom.

Once all measurements have been accounted for, the total

deviation is added to the a priori state to obtain the a

posteriori. The covariance is updated with each update

of the deviation as well. The a posteriori covariance is

obtained after the final measurement at that time has

been processed.9

The prediction step is consistent with the process

for a traditional EKF prediction. The CNT algorithm

is capable of considering many different sources of

perturbations in the propagation of both the state and

the PNTM, these include gravity gradient perturbations,

solar radiation perturbations and ephemeris-based

location of the perturbing bodies. The PNTM is defined

as

Γ(tk, tk+1) =

∫ tk+1

tk

Φ(tk+1, τ)B(τ)dτ, (8)

where Φ is the state transition matrix (STM) and B is

a function of time relating the process noise to the state.

The PNTM is initialized as matrix of zeros and after is

approximated numerically.10

Time Bias Estimation. Time bias estimation is

essential to correct errors in the onboard clock. The

CNT algorithm uses ground-based ephemeris to correct

on-board time and provide an updated a priori to the

navigation algorithm. It is not realistic to assume

that the satellite will receive a ground update at every

measurement update, so for simulation purposes, a time

update is done at a user-chosen frequency. The time bias

is

∆t = t− t∗, (9)

where t is the true time and t∗ is the time measured by

the clock on the spacecraft. The current CNT algorithm

will estimate ∆ given the following assumptions:

• There is no error in the time tag of the ground-based

ephemeris.

• The clock bias is estimated using one navigation

solution rather than a batch.

• The potential uncertainty in the ground solution is

not considered.

• The bias estimator considers the reference state to

be true.

• The navigation covariance does not change over the

bias period when propagating.

• The algorithm does not consider the velocity

covariance in the navigation solution.

• The algorithm assumes that:

∂r (t∗ +∆t)

∂∆t
≈ v

(
t∗ +∆t

)
+
(
a
(
t∗ +∆t

)
)
)
∆t.

(10)

In order to actually perform the bias estimation, the CNT

software solves the nonlinear least squares problem

∆̂t = argmin
∆t

(
r(t)− r̂

(
t∗ +∆t

))T ∗

P−1 (r(t)− r̂
(
t∗ +∆t

))
,

(11)

where a solution is converged upon when the ∆t is found

which minimizes the difference between the filter solution,

r̂ (t∗ +∆t), and the ground epoch solution, r(t).4

Image Generation and Processing. Testing the

integrated performance of the position, navigation, and

timing (PNT) methods developed in this work requires

the generation of realistic imagery that is representative

of lunar terrain. Previous work6 developed the capability

to generate images from the LROC global map images,11

which also enabled the generation of training data for the

chosen crater detector used in this work. However, the use

of the same image generation tools later led to large state

errors observed in integrated tests that were previously

characterized as some unknown systematic measurement

bias.4 The previous errors have since been identified to

be caused by inaccurate image projection and camera

model assumptions that result from the use of the image

generation tools used for detector training. To further

study these issues, analysis of the image distortion are

presented along with a new image generation method

using crater templates are discussed below.

Distortion Analysis. The ML-based detector used in

this work relies on an image generation process that

produces images of a fixed image size, which takes the

large sections of the LROC global maps to generate

image samples of the specified crop size. As they were

used for training the neural network, the cropped images

were selectively sampled according to the training/testing

paradigm described in previous work6 such that the

detector can “learn” characteristics about lunar craters

to enable detection. The focus of the image generation

pipeline was not to render camera-specific terrain images

from simulated orbits, instead, the tools’ primary aim

was to create thousands of crater samples for training

to develop a detector that was agnostic to specific

orbital geometry, lighting conditions, and camera models.

Along with these cropped images, the training datasets

also include the catalogued crater data5 projected into

a flat plane. The projection of the crater centroids

to the flat cropped images and their expected crater

locations from an orbital perspective do not match

exactly, since the generated images do not account for

the orthographic projection of the data onto the Moon’s

surface, and the camera model used was an approximation

of a pinhole model based on the cropped image size

and a chosen altitude. The previous configuration of
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the image generation tool to produce images from a

simulated trajectory did not accurately account for these

projection errors, which led to an observed error shown in

Fig. 2. This plot shows the difference between the crater

centroids in the expected locations based on an orbital

camera model and those from the image generation truth

data. For the 4000 craters included in this test, the error

increases radially from the center of the image.

Figure 2. Radial pixel error between expected

crater locations and image crater centroids before

projection correction.

The 8 pixel error observed in the image corners

corresponds to approximately 800 meters in crater

centroid error, based on the current camera model

used with a spacecraft simulated at 100 kilometers in

altitude. The radial pattern suggests that the error can

be approximated through the use of the Brown distortion

model12 (neglecting tangential distortion parameters)

xf = x+ (x− xc)(1 + k1r
2 + k2r

4 + k3r
6),

yf = y + (y − yc)(1 + k1r
2 + k2r

4 + k3r
6),

(12)

where (x, y) are the expected crater centroid coordinates;

r =
√

(x− xc)2 + (y − yc)2 is the centroid’s distance

from the (xc, yc) image center; (xf , yf ) are the flat

image centroid coordinates; and k1, k2, k3 are the barrel

distortion coefficients. Given the data shown in Fig. 2,

a least squares solver is used to provide estimates of the

distortion coefficients in Table 1.

Table 1. Distortion Parameters

Parameter Value

k1 2.838e(-8)

k2 1.141e(-14)

k3 -2.281e(-20)

Figure 3 shows the error magnitude as a function of the

centroid distance in pixels. From the computed distortion

coefficients, the error is approximated using the Brown

model shown in Eq. 12, which follows the trend of the

raw data. However, the output of the Brown model does

not capture the behavior of the non-zero error close to

the image center of approximately 1 pixel in magnitude,

which will contribute to the measurement error resulting

from centroid estimates that use this distortion map.

Figure 3. Error magnitude compared to the Brown

model output.

Because of this identified distortion, the centroid

measurements can be constrained to exclude values found

in the outer corners of the image, at the cost of limiting

the number of craters available for subsequent processing

within CNT. User-configurable flags can be also be used

to ignore craters that are partially in the field of view such

that the crater detector and the subsequent ellipse fitting

method are able to compute more accurate centroids given

full craters. Limiting the detections to exclude the far

corners of the image and the edges reduces the error of the

computed centroids with the goal of preventing inaccurate

matching between the detections and the catalog in the

crater identification step.

Template Images. An alternate image generation

capability based on creating image templates was

developed for testing in this work. Since the detector

was developed using the aforementioned image generation

tools, the same software can be reconfigured to produce

image samples of every known crater included in the

Robbins catalog. Additionally, previous testing of the

crater identification and position estimator components of

CNT relied on simulated detections that were generated

by sampling and propagating expected crater locations in

the satellite’s field of view for a given trajectory. With

crater templates generated for the catalog and knowledge

of the expected craters in the field of view, image stitching

methods are implemented to resolve the issues previously

encountered with camera and projection errors without

the need for radially distorting the images. An example

generated image is shown in Fig. 4, where the chosen

background terrain is sparsely populated with small
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craters in a relatively flat environment. In this image,

the larger craters are placed on top of the background

terrain at their expected locations. One advantage

of using this image generation method is the reduced

runtime, as the templates can be generated prior to

testing a particular trajectory which significantly reduces

the image generation time compared to the previous

method as it required file queries of large input maps. To

efficiently run Monte Carlo tests for the CNT workflow,

the template-based image generation method was chosen

as the primary tool for the remaining work.

Figure 4. Template-based simulated image.

Test Data Generation and Test Cases. As

described earlier, template-based images are generated

using simulated detections. Simulated detections are

generated by projecting the field of view (FOV), at a given

point in time, onto the moon and retrieving the craters

that fall within its vicinity. For this work, the camera

model follows a simple pinhole model and the FOV is

assumed to be square with 909 pixels on each side. Once

the detections are retrieved, measurement noise is added.

The angle between the sun, moon and the spacecraft

is also tracked, and when the angle is greater than 90

degrees, no detections are generated. The shadow due to

this angle is not accounted for yet. It is simply assumed

that if the angle is less than 90 degrees consistent lighting

is available and if the angle is greater than 90 degrees,

the image is completely dark. The measurement bias is

assumed to be random and fixed, so in simulation this is

done by choosing a mean and covariance for the bias and

sampling it for each MC trial. The bias is then added

to each simulated detection in both the x and y camera

directions. This work also tests trajectories with higher

altitudes than the previous work,4 so the bias is scaled by

a factor of 100/h0, where h0 is the initial altitude, as the

altitude increases. This step was taken because the initial

bias was designed to push the limits of the algorithm at

100 km altitude but the same bias applied at a higher

altitude will equate to a larger projection of that bias

onto the Moon. In practice, the bias will not change with

altitude but the bias that is used for testing is also larger

than should be expected in practice.

The simulated detections can be generated for any

orbit parameters. For the purposes of this work, two

100 sample Monte Carlo tests are provided with images

in-the-loop and nine 100 sample Monte Carlo tests are

provided for simulated detections only. The tests with

images take significantly longer to run than the tests with

simulated detections, so using simulated detections allows

for the assessment of the identification, state estimation

and time bias estimation without taking the time of

running images through the detector. Optimization of

the detector could improve the evaluation time it takes

to run images and is currently being performed. For all

of these tests, the initial eccentricity (e), right ascension

of the ascending node (Ω), argument of periapse (ω), and

true anomaly (ν) remain the same while semimajor axis

(a) and inclination (i) are varied. The static variables are

all set to zero except for eccentricity, which is set to a

value of 0.003. For the two tests with images, a = 1837.5

km and 2337.5 km and i = 10◦. The simulated detections

test cases consider a = 1837.5 km, 2037.5 km and 2337.5

km and i = 20◦, 50◦, and 60◦. For all test cases 20x20

gravity perturbations are included and DE43013 is used

for propagation of the truth and DE42114 is used for

propagation within the filter. The gravity perturbations

are taken from a gravity clone generated from the Lunar

Reconnaissance Orbiter (LRO) gravity data.15 The time

bias for all tests is set to two seconds. The initial reference

time January 1, 2000 at midnight. Additionally all tests

initially start on the dark side of the orbit but they return

to the light side after only a few minutes.

Results. Figures 5 and 6 show the state and bias

errors, respectively, with an initial state of 10◦ inclination,

semimajor axis of 1837.5 km, and a bias in both x and

y is sampled from a mean of 2 × 10−3 and standard

deviation of 5 × 10−5. Figures 7 and 8 show the state

and bias errors, respectively, with an initial state of 50◦

inclination, semimajor axis of 2037.5 km, and a bias in

both x and y is sampled from a mean of 6.67× 10−4 and

standard deviation of 1.667 × 10−5. The bias mean and

standard deviation are normalized by focal length, which

is 982 pixels for the purposes of this paper, for ease of

implementation. The 3D RMSE, which is given by

RMSE3D =

√√√√ 1

N

N∑
i=1

(δx2(ti) + δy2(ti) + δz2(ti)),

(13)

where δx, δy and δz are the state errors and N is the

total number of measurement times, is shown in Table 2

along with the 3D RMSE for test cases with simulated

detections.

Figures 5 and 7 indicates that the filter is pessimistic

during periods of full shadow since the filter three sigma
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Figure 5. Monte Carlo Test Position Error with

Simulated Detections, i = 20◦, a = 1837.5 km

Figure 6. Monte Carlo Test Measurement Bias

Error with Simulated Detections, i = 20◦, a = 1837.5

km

bound is larger than the MC three sigma bound. The

filter and MC three sigma bounds are significantly closer

during times where measurements are available though.

The pessimism of the filter is most likely due to the

nonlinearity of the problem. This could be improved

by tuning of the process noise or finding a better model

for the process noise. Additionally, the performance

of the filter seems to degrade as inclination and/or

altitude increases, which can be expected due to increased

nonlinearity. Further work needs to be completed to

discern whether the goal of a position error RMS less

than 100 m in each axis can be met for these conditions.

Currently only the tests at 60◦ inclination and the highest

altitude case at 50◦ inclination violate this requirement.

Despite the large covariance though during darkness,

for all cases, the filter showed better consistency once

measurements were available. There are also a few points

in the x position error where the error is very small but

the covariance bounds of the filter do not reflect this.

This phenomenon is most likely due to the geometry of

Figure 7. Monte Carlo Test Position Error with

Simulated Detections, i = 50◦, a = 2037.5 km

Figure 8. Monte Carlo Test Measurement Bias

Error with Simulated Detections, i = 50◦, a = 2037.5

km

the problem because of its repetitive nature.

Figure 9 shows the MC results when processing images

for an inclination of 10◦, semimajor axis of 1837.5 km, and

no bias. The bias results in Figure 10 indicate that despite

not adding any bias to the images, there is one. Figure

11 shows the bias results when adding the mean of all of

the estimates at the final time to all of the data points.

These results are clearly bounded and the MC and filter

three sigma bounds are close together. This indicates

that the filter is most likely estimating the bias correctly,

but either the image generation process or the detector is

adding a bias to the detections. While the exact cause

of this bias is unknown, it will be investigated in the

future. The position error displays that the bias does

not significantly effect the results of the position error

estimates. Figures 12 and 13 show the MC state error and

adjusted bias error, respectively, with an inclination of

10◦, semimajor axis of 2337.5 km, and no bias. The RMS

errors for both tests with images are shown in Table 3

where 1 refers to the lower semimajor axis test and 2 refers
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a (km)/i (◦) 20 50 60

1837.5 96.40 113.18 115.60

2037.5 117.68 129.89 164.08

2337.5 125.81 146.82 200.51

Table 2. Mean 3D RMS Errors for All Simulated

Detections MC Tests

to the higher one. The RMS errors for the higher altitude

test are slightly higher, which is consistent with simulated

detections results. Both cases meet the requirement of

less than 100 m error in each axis.

Figure 9. Monte Carlo Test Position Error, i =

10◦, a = 1837.5 km

Figure 10. Monte Carlo Test Measurement Bias

Error, i = 10◦, a = 1837.5 km

Future Work. The CNT algorithm is on track to

meet its goals with simulated imagery but in order to

push the algorithm to a higher technology readiness

level, imagery from a lunar mission must be processed.

Figures 14 and 15 show the detector output overlaid onto

two images taken from the LROC narrow angle camera

(NAC). The images have been cropped to be square and

their overall dimensions are 316x316 pixels. The figures

Figure 11. Monte Carlo Test Measurement Bias

Error Adjusted by Mean of Final Points, i = 10◦,
a = 1837.5 km

Figure 12. Monte Carlo Test Position Error, i =

10◦, a = 2337.5 km

evidence that the detector is successfully able to identify

craters within on-board imagery. The future work is to

retrieve more LROC imagery and trajectory information

and run a set of imagery through the full CNT algorithm.

Additionally, the time bias and measurement bias

models both need more robust implementations, such as

random walk for the clock bias and a fixed, radial bias for

the measurement bias at all altitudes. The CNT software

must also be implemented on small satellite compatible

hardware such as the NVIDIA Jetson. To further improve

the testing pipeline, future work towards the generation

of lunar images through the use of Blender and improved

camera models will enable additional capabilities for

CNT. Initial work is underway to generate images

from Blender, such that the image projection issues

encountered using the LROC global maps are mitigated.

This addition to the image generation capabilities can also

enable the inclusion of varying the simulated spacecraft’s

attitude and further testing the detector’s sensitivity to
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Figure 13. Monte Carlo Test Measurement Bias

Error Adjusted by Mean of Final Points, i = 10◦,
a = 2337.5 km

rx ry rz 3D

mean 1 (m) 59.12 60.49 29.51 91.21

std 1 (m) 21.85 23.23 11.57 29.29

mean 2 (m) 86.75 82.34 35.41 127.19

std 2 (m) 29.68 28.54 16.70 36.82

Table 3. Mean and Standard Deviation of RMS

Errors for MC Tests with Images

varying lighting conditions.

Conclusions. This work evidenced that the CNT

algorithm is capable of meeting its goals of a position

error RMS of less than 100 m and a clock estimate of

less than 100 ms for the majority of tests ran. Further

work will need to be accomplished to discover whether

these goals can be met at up to a 500 km semimajor

axis at high inclinations. It is also shown that the

template-based imagery provides an opportunity to test

the fully integrated algorithm without the issues provided

by the mosaic images. The results with the template

images and the preliminary results with the LROC

NAC camera cropped images are good indications that

the CNT algorithm is capable of performing on-board

navigation and timing estimates. Future work will

provide full results with LROC NAC images in-the-loop.
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