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Abstract. A novel square root extended information

filter (SREIF) has been developed to address the visual-

inertial odometry and SLAM problems with the poten-

tial for constant-time complexity navigation and map-

ping with complex dynamics and large maps. This algo-

rithm will be applied to a recent, publicly-available dataset,

the Blue Origin Deorbit Descent, and Landing Tipping

Point Dataset, and the filter’s performance will be as-

sessed against the post-processed truth solution. Further,

the necessary discrete-time IMU dynamics models, which

are not as commonly accessible as their continuous-time

counterparts, will be explicitly derived and provided for the

benefit of future researchers and practicing engineers.

Introduction. Terrain Relative Navigation (TRN) is

traditionally characterized by methods that aim to match

onboard sensor data to pre-existing onboard maps in or-

der to improve a spacecraft’s absolute position and ve-

locity estimates relative to an absolute frame. This re-

quires that an a priori map be available before flight, per-

haps based on data gathered by a prior mapping space-

craft or the like, or an iterative process wherein ground

personnel are involved in creating and exchanging maps

with the spacecraft during flight. For destinations farther

afield from Earth, beyond the moon and Mars, these prior

maps are not currently available for most bodies and fu-

ture autonomous and semi-autonomous missions will need

to have the capability to extract navigation observables

from potentially unmapped terrain expediently in order

to make prompt guidance and control decisions. The most

versatile frontend sensor for these scenarios is commonly

considered to be the optical camera due to its ubiquity,

small size and weight, and passivity.

The backend estimation problem of navigating through

an unknown environment while contemporaneously map-

ping it is referred to in the robotics community as the Si-

multaneous Localization and Mapping (SLAM) problem.

Starting with solutions based on the Extended Kalman

Filter (EKF) in the 1980s, the state-of-the-art progressed

to particle filtering and graph- and keyframe-based least

squares methods more recently.1 There is thus a deep and

rigorous body of research documenting the development

of these techniques that has shed light on the underlying

information structure inherent to the SLAM estimation

problem. Visual Odometry (VO) can be formulated in

a very similar way to V-SLAM but, in favoring only the

trajectory and not the map, tends to “forget” visual fea-

tures over time in order to maintain computational effi-

ciency.2 This precludes the use of loop closures as in full

SLAM which serve to improve the overall solution by the

re-detection of previously tracked visual landmarks.

The EKF, while generally out of favor in the SLAM

community due to its computational scalability, has a

long and continuing history of successful application in

aerospace problems and is well-suited to complex dynam-

ics models and the inclusion of process noise. To the

former point, where complex pre-integration strategies

must be used in graph-based approaches to account for

high-rate sources such as from inertial measurement unit

(IMU) data, the EKF handles this efficiently through a

“model replacement” kinematics model. Likewise, the in-

clusion of process noise, essential in space problems to

account for unknown perturbations, is notoriously diffi-

cult in least-squares algorithms and relatively simple to

include in the EKF.3

These observations motivate the creation of a new

EKF-like SLAM algorithm for space applications that

specifically targets the EKF’s main drawback: its un-

bounded computational complexity. The applications of

such a filter are imagined to be in a variety of spacecraft

relative navigation scenarios including TRN for descent

and landing, small body relative navigation, and proxim-

ity operations and rendezvous with an unknown space-

craft. Here, we briefly present the proposed solution and

apply it to the recent Blue Origin Deorbit, Descent, and

Landing Tipping Point Flight 1 dataset4 which includes

images, IMU data, LIDAR data, and a post-processed

truth solution from a suborbital test launch of the New

Shepard rocket.

Information Filtering. Kalman filters track a mean

and associated Gaussian uncertainty in the form of a state

vector and covariance matrix. The canonical form of the

covariance matrix is its inverse, the so-called information

matrix, which appears explicitly in the typical definition

of the Gaussian probability density function. SLAM fil-

ters based on the information matrix have been devised

previously by researchers to take advantage of the in-

formation form’s inherent sparsity, additive measurement

updates, and intuitive mapping to the Markov Random

Field (MRF) graphical model.5 These filters all suffered

from drawbacks associated with approximations related

to preserving sparsity and inverting the information ma-

trix for state propagation.

Information filtering is not a foreign concept to the

space navigator and algorithms based on the information

square root are not uncommon in orbit determination. In

fact, Bierman6 emphatically argues that square root fac-

torization methods are strictly superior to Kalman-type

filters in every conceivable scenario due to their inherent

numerical stability. Interestingly, this observation circa

1977 may yet hold true for the sequential SLAM prob-

lem.
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Following insights from these earlier works, as well as

the observation by Daellaert & Kaess7 that the square

root (SR) of the information matrix maps to a Bayes

Tree instead of an MRF, we instead see an opportunity to

formulate the visual SLAM problem using the SR infor-

mation matrix. Our previous work has shown that this

structure can be leveraged to create a tree-like depen-

dence structure rooted at the current state estimate. This

enables easy access to the exact marginal distributions re-

quired for state propagation as well as fast recovery of the

states via simple back-substitution. Further, because this

structure is created incrementally, it can be of arbitrary

absolute size, memory permitting, without adversely af-

fecting the baseline computational requirements of the

algorithm.

Visual Features. Image features identified and

tracked over multiple image frames, notoriously unreli-

able in their natural XYZ parameterization within se-

quential filtering algorithms, can instead be accurately

captured using the Inverse Depth Points (IDP) measure-

ment model.8 This approach requires that a copy of the

camera position for each landmark at the time it is in-

stantiated to “anchor” it to the world reference frame.

By over-parameterizing each landmark in terms of this

position and some world-referenced spherical angles, as

well as the inverse of the initial range, the tracking per-

formance is much more linear and therefore Gaussian over

multiple images. The downside is that the state dimen-

sion is larger than it would be otherwise, 3p + 3n × 1

instead of 3n where p is the number of anchor poses and

n is the number of landmarks in the state. Our targeted

handling of the computational complexity, as well as our

approach of incrementally augmenting states to preserve

sparsity, naturally addresses this drawback.

Dynamics Model. The current literature in the

realm of visual-inertial navigation systems is awash with

IMU model replacement formulations based on the as-

sumption that the IMU output data to the filter is in the

form of raw specific force and angular velocity. By con-

trast, many real higher-quality IMUs provide a lower-rate

data output (50-100 Hz) that is pre-integrated in the form

of delta velocity ∆v and delta angle ∆θ measurements

that are valid over the sampling interval and account for

coning and sculling effects. Such is the case with the

BO DDLTP dataset, where these quantities are given at

50 Hz. One approach may be to convert these quantities

back to average specific forces and angular rates via a sim-

ple division by the intervening time intervals but we prefer

a closed-form solution based on these raw integrated data

values.

The state vector we have chosen to use includes position

and velocity in the Earth-Centered-Earth-Fixed (ECEF)

frame E as well as a quaternion to represent the attitude

from the Center of Navigation (CON) frame N ,

x =
[
Ep Ev E

N q
]T
.

These were processed in a “model replacement” mode

where the nominal trajectory in the state propagation

comes from the high-rate IMU outputs. The full position

and velocity states can be updated over ∆t = tk+1 − tk
via

Epk+1 = Epk + ∆tEvk +
∆t

2
E∆vc (1)

Evk+1 = Evk + E∆vc (2)

where the true accelerometer output comes into the equa-

tions through

E∆vc = E
BCB∆v + E∆vg

and where E
BC represents the rotation matrix mapping

vectors from the IMU frame B to the ECEF frame. The

gravitational and Coriolis effects must be accounted for

via
E∆vg = ∆t(Eg − 2Eω⊕ × vk)

where Eω⊕ is the rotation rate of the Earth in radians per

second and Eg is the acceleration due to gravity. Since the

IMU itself is at a lever arm from the CON, the difference

in specific forces at that location must be accounted for.

Referring to Steffes,9 this can be done via

B∆v = B∆v − B∆vrot

with
B∆vrot = B∆vcent + B∆vEuler

B∆vcent ≈ −
1

∆t
([B∆θ×]◦2 ◦ Bd)[1]

B∆vEuler ≈ 0

where ◦ represents an elementwise (Hadamard) square,
Bd is the lever arm in the IMU frame, and [1] is a col-

umn of ones. The delta velocity output from the IMU is

corrupted by zero-mean, white Gaussian noise,

B∆ṽ = B∆v + Bwv

Defining the additive error states as

Eδp = Ep− Ep̂

Eδv = Ev − Ev̂

plugging in the above relationships, and ignoring second-

order terms eventually results in the following error state

models for position and velocity:

Eδpk+1 = Eδpk + ∆tEδvk +
∆t

2
(Bδvk+1 − Bδvk) (3)

Eδvk+1 = (I3 − 2∆t[Eω⊕×])Eδvk−
E
N̂

C[NBC(B∆ṽ − B∆v̂rot)×]Nδψ − E
B̂

CBwv. (4)

where the approximation E
BC ≈ E

N̂
C(I3+[Nδψ×])NBC was

used and where [Nδψ×] represents the skew-symmetric

cross product matrix of a set of error angles Nδψ between
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the estimated and true Center of Navigation frame N .

We also discount any effects that the gyroscope bias and

noise have on the lever arm term as these are significantly

nonlinear but small.

Using a multiplicative formulation to properly capture

operations on SO(3), a set of quaternion states can be

updated by computing the error quaternion

N
N̂
δq̂ ≈

[
Nδψ/2

1

]
E
N q̂k+1 = E

N̂
q̂k ⊗ N

N̂
δq̂−1 (5)

Note that for this work, in concert with the conventions

used in the dataset, we utilize the JPL quaternion con-

vention as described by Trawny & Roumeliotis.10

Since the angular rates are already integrated and a

principal rotation vector is being provided by the IMU,

the error state for the angular rates can be represented

simply as
Nδψ = N

BCB∆θ

where the true delta angle is corrupted by a gyroscope

bias and noise,

B∆θ̃ = B∆θ + Bwθ.

such that

N δψk+1 = N δψk + N
BCB∆θ̃ − N

BCBwθ. (6)

The covariance matrix can now be propagated by

Pk+1 = Φk+1,kPkΦ
T
k+1,k + Γk+1,kQkΓ

T
k+1,k

where the state transition matrices can be directly ex-

tracted from equations 3, 4, and 6 and

Qk = diag{σ2vI3, σ2θI3}

Without any measurements or bias compensation, the al-

titude over time as a result of the presented state prop-

agation strategy and using the present dataset is shown

in Figure 2, showing good agreement. Further inspection,

however, reveals that there is a significant unmodeled per-

turbation after launch that occurs prior to the first image

in the dataset at t = 25 seconds, ultimately resulting in

a landing position that is nearly 4.5 km from the truth.

Because of this, we chose to start our VIO algorithm at

t = 25 seconds.

SREIF Mechanization. The reader is encouraged to

review our previously-published works on our SREIF al-

gorithm11 but there are some new details used here that

merit discussion. Since the lever arm between the camera

frame C and CON frame N is nearly 1.5 meters, a modi-

fication must be made to the inverse depth measurement

model to increase its consistency. In particular, whereas

the inverse depth model in the literature only depends on

a given feature’s states and the camera’s position at ini-

tialization, the addition of the lever arm results in a new

dependence on the camera’s attitude at initialization.

Figure 1. Altitude profile of integrated trajectory

versus provided truth solution.

Figure 2. Attitude angles and ±3σ over time. Note

the unexplained temporary bias at liftoff, particu-

larly in δψ2.

A measurement to a camera feature follows the pinhole

camera model
Cz = K

Ch
Chz

+ wm

where K is the camera intrinsic matrix, w is the assumed

zero-mean white Gaussian additive noise (in pixels), and

the inverse depth model can be used to form the expected

measurement

Ch = C
EC[ρ(Ep0 − Ep) + Em]

where ρ is the inverse of the range to the feature from the

initial camera position Ep0 and Em is a vector of trigono-

metric functions that depends on globally-referenced az-

imuth θ and elevation φ angles. Details on these terms

can be found in our recent works or in older inverse depth

literature.8 Here, we add in the additional complication
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of the camera lever arm NdC from the CON in the CON

frame so that the inverse depth model becomes

Ch = C
EC[ρ(EpC,0 − EpC) + Em]

where the camera positions in the ECEF frame are ex-

panded as
EpC,0 = Ep0 + E

NC0
NdC

EpC = Ep + E
NCNdC

so that the measurement model, after simplification, be-

comes

Ch = ρ[CEC(Ep0 − Ep + E
NC0

NdC)− NdC ] + Em]

which clearly has a dependence on the initial camera po-

sition and attitude as well as the current camera position

and attitude and the inverse depth parameters. The rele-

vant Jacobians are omitted here for brevity. In addition,

measurement update iteration (as in Trawny et al12) was

utilized to improve the convergence of the solution.

To identify features and tracks over the 350 useable im-

ages in the dataset, we utilize MATLAB’s implementation

of KAZE features and camera undistortion tools available

in the Computer Vision Toolbox.1∗ A Mahalanobis dis-

tance test was also implemented for feature update outlier

rejection.

Visual Odometry Results. After much effort in

tuning and debugging, the presented VIO filtering strat-

egy only marginal improvement on the raw IMU state

propagation was achieved. Using realistic noise values

and tracking as many features as were available, we ob-

served that there is a strong bias in one of the attitude

states that results in cascading errors in the other states.

This also manifests in erroneous negative depths in the

feature estimates. This can be seen in Figure 3 If the

noise was increased to artificially de-weight the current

estimate or the measurements, the resulting solution was

noticeably improved and the bias attenuated. It is not

currently known whether this was caused by an error in

the formulation or with an unidentified programming bug.

Noteworthy is that by only tracking a single feature at

a given time, the consistency of the solution can be im-

proved and the previously-noted attitude bias is absent.

Figure 5 shows the true trajectory and VIO solution al-

gongside individually tracked landmarks on the ground.

With this observation in mind, a likely culprit for the ob-

served inconsistency may be the fact that using a single

anchor camera pose for multiple features, as opposed to

an anchor pose for each feature, can result in divergent

behavior under certain conditions. This fact, as noted

and improved upon in the literature,13 was not known to

the authors until very recently.

These results might also be improved by explicitly mod-

eling and estimating IMU biases or other parameters dur-

ing flight. Efficiently doing so can incur a computational

1∗https://www.mathworks.com/products/computer-
vision.html

Figure 3. Attitude angle errors and ±3σ over time

generated by the VIO algorithm. A vertical black

line denotes the time of the last useable image.

Note, in particular, the unexplained bias in δψ1.

Figure 4. Post-fit pixel residuals with ±1σ when

tracking many features with update iteration.

penalty because of the state augmentation strategy em-

ployed in our SREIF and thus it is the subject of future

research by the authors. Additionally, since the present

scenario offers no opportunity for loop closures, as may

or may not be the case in other relevant space navigation

scenarios, the effects of loop closures on the computa-

tional performance are not relevant here and the solution

is equivalent to a visual odometry approach but where

the estimated map can be retained at no additional com-

putational cost. Efficient loop closures and parameter

estimation, as well as real-time implementation, will be

the subject of future work.

Conclusion. While the filtering strategy presented

was not entirely successful in improving the inertially-

integrated IMU solution, we believe that the mathemat-

ics presented here will be useful to other researchers in

the field that wish to work with the Blue Origin Deorbit
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Figure 5. Comparison of true trajectory with VIO

solution with only one feature tracked at a time.

Descent, and Landing Tipping Point Dataset. Since the

discrete form of the dynamics shown here does not seem

to be as commonly expressed in the literature as the con-

tinuous form, particularly when including corrections for

the IMU lever arm, and since we believe that stating these

equations explicitly will enable other researchers to more

easily process this particular dataset, we have chosen to

provide them in this paper.
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