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Abstract. For Earth-observation imagery to become

actionable, a rapid means of locating and comparing re-

cent imagery with historically acquired imagery is needed.

STP-H7-CASPR has demonstrated the potential of the

Satlantis iSIM-90 sensor by successfully capturing and

downlinking over 7700 4K images at ∼3.0 meters per pixel

ground-resolved distance. This submission presents a pro-

cess for geolocating imagery acquired by STP-H7-CASPR

using a Python application consisting of API requests,

traditional computer-vision techniques, deep-learning im-

age registration, and satellite imagery provided by Google

Earth Engine and SentinelHub. The authors demonstrate

a method of automatically geolocating images that is accu-

rate to within 0.04 deg2 error within the longitude and lat-

itude. The LoFTR method for detector-free feature match-

ing is tested on space-based imagery, with results com-

petitive to classic feature-mapping methods, even without

fine-tuning. The pipeline developed in this work enables

the comparison of near-real-time Earth-observation im-

agery to historical imagery for temporal change detection

and analysis.

Introduction. The Space Test Program - Houston 7

- Configurable and Autonomous Sensor Processing Re-

search (STP-H7-CASPR) experiment has been in opera-

tion on the International Space Station (ISS) since Jan-

uary 12th, 2022. It is an ongoing mission hosted by the

Department of Defense (DoD) Space Test Program to

develop and test new techniques for automated onboard

sensor-data processing [1]. One of the primary sensor pay-

loads aboard CASPR is the Satlantis iSIM-90 multispec-

tral imager, capable of capturing 4K (4096×3072 pixel)

images at approximately 3.0 meters per pixel ground-

resolved distance (GRD) in four spectral bands [2]. Each

image covers roughly 118 square kilometers. CASPR can

be observed in Figure 1 as delivered to STP in March

2021.

As of September 2022, STP-H7-CASPR has captured

over 7700 4K images. Generating this dataset of high-

resolution, low-GRD Earth-observation imagery becomes

valuable for downstream temporal-change applications af-

ter the imagery is geolocated on the surface of the Earth.

An example of such a task is the detection of urban de-

velopment as addressed in the SpaceNet Challenge [3].

For these downstream applications, consistent meter-level

precision feature matching is critical for accurate image

alignment. Meeting this requirement with cross-sensor

modalities, such as active versus passive imaging, and

with variable environmental conditions, such as seasonal

change and weather interference, is an active field of re-

search [4, 5, 6, 7].

Traditional approaches to purely visual image geolo-

cation typically use techniques developed in the image-

registration domain, such as SIFT-based homography.

This method can discover a collection of features within

an image and match them to features in mapped satellite

imagery. Recently, machine-learning approaches to image

registration have emerged, such as LoFTR [8], that use

deep-learning feature matching techniques rather than

handcrafted features with a detection stage for image reg-

istration.

The task of this research is to accurately geolocate

CASPR imagery given only a downlink time. By lever-

aging a variety of open-source satellite-imagery datasets

and computer-vision techniques, we demonstrate the ben-

efits and drawbacks of several approaches when consider-

ing images collected from our sensor. We leverage Google

Earth Engine [9], SentinelHub [10], OpenCV [11], and an

ISS locator API, “Where the ISS At?”, [12] to construct a

process that automates the georegistration procedure for

CASPR imagery.

Background and Related Work. The background

section introduces the Space Test Program and details

on the CASPR mission. It also provides information on

Earth-observation platforms and tools as well as feature

extraction methods. Several potential applications of this

imagery and pipeline are also discussed.

STP-H7-CASPR. The Department of Defense (DoD)

Space Test Program (STP) was established in 1965 and

now provides affordable and efficient spaceflight opportu-

Figure 1. STP-H7-CASPR as delivered to STP in

March 2021
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Figure 2. The projective mapping of SIFT features from a CASPR image to a query image (green lines)

is shown as it relates to the proper alignment of this CASPR image (red square) onto Google Earth

imagery - Imagery Credit Google Earth [13] and STP-H7-CASPR - STP-H7-CASPR was Integrated

and Flown by the DoD Space Test Program - DISTRIBUTION STATEMENT A: Unlimited Distribution

(AFRL-2022-1571)

nities for space experiments on the ISS [14]. STP hosts

DoD payloads on the ISS to advance on-orbit research

and technology. STP-H7 is a pallet of experiments that

was flown to the ISS on the SpaceX Falcon 9 24th Com-

mercial Resupply Service (CRS-24) mission and attached

to the outside of the Columbus Module in December of

2021. The CASPR experiment, as one of many on the

pallet, is currently operating aboard the ISS performing

autonomous-sensing operations and experiments on Earth

imagery.

CASPR’s primary imager is the iSIM-90, which was de-

signed and developed by the Spanish company Satlantis.

The iSIM-90 is a binocular, multispectral telescope which

collects data in the visible and near-infrared (VNIR) spec-

trum at ∼3.0-m GRD. The VNIR bands are captured by

four filters split between two separate imagers, which al-

lows for multispectral imagery without the need for mov-

ing parts such as a filter wheel. Namely, one imager con-

tains a near infrared (NIR) and a red filter split down

the center of the image, while the other imager contains

a blue and a green filter split down the center of the im-

age. Data from the iSIM-90 is stored in the form of a

4096× 3072 8- or 12-bit image from each sensor.

While onboard processing is the ultimate goal of

CASPR, effective change detection requires large amounts

of up-to-date mapping and situational data that is im-

practical to maintain onboard a space platform. Down-

linking imagery and applying this process for mapping

combines the best of both approaches. This enables ef-

fective use of onboard computing and application of the

data to real-world needs.

Earth-Observation Imagery. Modern satellite-imaging

solutions provide a growing stream of Earth-observation

data for scientific and commercial purposes. Governments

have long lead the charge in providing this data. Perhaps

the most extensive program has been NASA Landsat,

providing consistent global land-cover content since 1972.

The Operational Land Imager used on Landsats 8 and

9 can generate 15-m GRD panchromatic and 30-m GRD

RGB imagery [15, 16]. Similarly, the European Space

Agency (ESA) Copernicus program flies several satellites

for Earth-observation. The Sentinel-2 twin-satellite con-

stellation attains 10-m GRD for visible bands [17].

More recently, commercial enterprises have entered the

Earth-observation satellite space. Maxar Technologies

has produced a series of WorldView satellites since the

late 2000s that are capable of panchromatic imaging to as

low as 0.3-m GRD [18]. The next-generation WorldView

Legion constellation of six satellites will match this spatial

resolution while enabling improved revisit times and gen-

eration volume [19]. Planet Labs operates multiple con-

stellations totalling over one hundred Earth-observation

satellites. The Planet Dove constellation produces 3.0-

m GRD imagery of the entire planet’s surface each day

[20, 21, 22]. Of the platforms considered in this section,

this is the most similar in spatial resolution and opti-

cal quality to CASPR. Additionally, the Planet SkySat

constellation enables tasking of imagery at 0.5-m GRD

[23, 24]. The next-generation Planet Pelican offering will

generate up to 30 tasked target revisit captures per day

from 32 satellites at 0.3-m GRD [25].

As ever larger quantities of Earth-observation data are

being generated, many sources of this imagery are devel-

oping systems to ease its viewing, comparison, and ap-

plication. Planet provides a series of tools and interfaces

to browse and compare daily image captures and long-

term composite “basemaps” generated from them [26, 27].

Less powerful and current but much more widely accessi-

ble, Google Earth has provided similar forms of access to

and visualization of satellite imagery for the general pub-

lic since 2005. More recently, Google Earth Engine was

introduced to support analysis of this imagery via cloud
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resources [28]. Google Earth Engine now provides seam-

less access to Planet APIs for delivery of imagery [29].

Similar resources are provided by competing platforms,

including SecureWatch from Maxar [19], Sentinel Hub for

Copernicus missions [30], LandsatLook for Landsat [31],

and USGS Earth Explorer for all platforms that feed into

the US Geological Survey [32].

Proliferation of Earth-observation imagery is leading

to its application across a variety of domains. [33] pro-

vides a review of the use of Sentinel-2 imagery for tasks

ranging from general land-use classification to forest and

agricultural monitoring to disaster response. Higher-

resolution Earth-observation imagery, such as the 3-m

GRD of CASPR, can enable more complex tasks such as

evaluating particulate matter pollutants from orbit [34]

or detecting overfishing [35], illegal mining, and other

nefarious activities. The SpaceNet Challenges have pro-

duced numerous methods of extracting actionable data

from Earth-observation imagery, from building footprint

and road network extraction to urban development assess-

ment and flood detection [36]. A common thread for all

of these tasks: the geolocation offered by our pipeline is

critical for validation and directed action based on these

methods.

Feature Extraction. This research considers four

feature-extraction methods in order to perform image

matching. Feature-extraction methods are used to con-

vert signals from raw data into numerical formats that

contain information from the original data. In the image-

processing domain, collections of pixel values can be

transformed into useful features using feature-mapping

techniques. This section discusses four methods that per-

form feature mapping in our pipeline: SIFT, AKAZE,

ORB, and LoFTR.

Features from the Scale-Invariant Feature Transform

(SIFT) algorithm, a classic feature-mapping method, are

used to locate and describe keypoints within images [37].

The reader is referred to the original paper for a full

discussion of the SIFT algorithm [37]. Liu et al. [38]

use SIFT features to increase object-recognition accuracy

in satellite imagery. SIFT features, designed to be both

scale- and rotation-invariant, are used as a replacement

for the object-proposal method stage in R-CNN. Liu et

al. evaluate their proposed framework on a database of

satellite imagery containing planes and ships. Joshi et al.

[39] provide an analysis of several feature-extraction algo-

rithms coupled with the support-vector machine (SVM)

algorithm for Landsat 8 image retrieval. The precision

and recall results indicate that SIFT fails in both low-

texture regions, or areas with low spatial frequency fea-

tures, and areas of the image with high spatial frequency

components, when compared with the Gabor filter used

for texture analysis [40]. Xiang et al. [41] explore the fail-

ures of SIFT registration in high-resolution optical and

synthetic-aperture radar (SAR) imagery. The authors

propose optical-to-SAR SIFT (OS-SAR) to perform fea-

ture registration in the presence of large variations in il-

lumination and geometry. Results indicate that OS-SIFT

features have good performance in image registration and

keypoint detection, but could be improved by considering

regional data, such as mutual information, rather than

just local features.

The Accelerated-KAZE (AKAZE) algorithm was de-

veloped by Fernández[42] to address the computational

challenge of feature detection and description on low-

power, camera-enabled devices. The reader is referred to

the original AKAZE paper for a full description of the al-

gorithm [42]. Elantcev et al. [43] compare SIFT, SURF,

KAZE, ORB, BRISK, and AKAZE features for match-

ing between unmanned aerial vehicle (UAV) and satel-

lite imagery in the presence of significant environmen-

tal variation. The authors present a modified statistical

differentiation method for increasing image-matching ac-

curacy. The comparison between features demonstrates

that AKAZE has the highest percentage of successfully

matched images in an urban environment but performs

the worst in a rural setting.

The ORB feature descriptor was developed by Rublee

et al. [44] as an alternative to SIFT. ORB is compared

to SIFT and a deep-learning method for registration of

Landsat 7 images by [45]. Their study demonstrates how

SIFT and ORB accuracies degrade as the similarity de-

creases between image pairs. Demchev et al. [46] evalute

ORB, SIFT, and AKAZE on image registration between

sequential SAR images. ORB is shown to return far fewer

feature vectors when compared to SIFT and AKAZE.

A detector-free method for matching local features us-

ing transformers is presented by Sun et al. [8]. This re-

search describes the Local Feature Transformer (LoFTR),

which performs pixel-wise dense matching in a coarse-

to-fine manner. The transformer architecture provides

a global receptive field that enables keypoint detection

in low-texture regions, increasing detection repeatabil-

ity. LoFTR highlights the importance of utilizing the

global context of features rather than just those in a

local neighborhood and is the only method in this re-

search that does not use descriptors in the local feature-

matching stage. Zhao et al. [47] employ LoFTR in a

image-matching pipeline similar to the one proposed in

this research, though the focus of their study is improv-

ing matching with deep-learning style-transfer methods.

As of publication, no publications on LoFTR applied to

the space-imagery domain aside from this work and [47]

have been identified.

Approach. This section presents an automated

pipeline for geolocating Earth-observation imagery. This

pipeline uses key features within the captured imagery to

map it to existing Earth-observation data. This geoloca-

tion process enables temporal-change detection and other

Earth-observation tasks.

First, the ISS location is determined using the times-

tamp of the downlinked image. This position can be re-

trieved from a web-API call that returns a latitude and

longitude pair. A variable-length region-of-interest is then
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Figure 3. (A) CASPR image downlink time is associated with the ISS location projected to the surface

of the Earth (B) A search space is generated from td to td−∆t (C) A query set is downloaded and image

registration occurs between IC and IQ using one of the methods described (D) An example of a successful

alignment at Maamutaa Island, Maldives. Image credit Google Earth [48] and STP-H7-CASPR - STP-

H7-CASPR was Integrated and Flown by the DoD Space Test Program - DISTRIBUTION STATEMENT

A: Unlimited Distribution (AFRL-2022-1571)

generated, with sample density, time window length, and

resolution as tunable parameters. This procedure can be

seen in Figure 3. Using this region-of-interest, an Earth-

observation imagery source is automatically queried us-

ing an API. Google Earth Engine and SentinelHub were

used to download Sentinel-2 imagery. Images are sorted

by amount of cloud cover to minimize error introduced

by weather. The SIFT, AKAZE, and ORB methods per-

form feature extraction on both CASPR images and query

images. LoFTR, which is detector-free, extracts feature

matches in a coarse-to-fine manner. It should be noted

that the LoFTR technique required image downsampling

to 640× 480 to fit architecture parameters. As such, the

effective GRD in both CASPR and query images are re-

duced. Next, the Random Sample Consensus (RANSAC)

algorithm is used to produce a projective transformation

from features in the image captured from CASPR, de-

noted IC , to query images, denoted IQ. Ideal parameters

for query image GRD, height, width, and spatial cover-

age were found primarily by maximizing the number of

feature matches that pass Lowe’s Ratio Test [37] during

the homography process and by manually examining final

alignment quality on a series of test scenes. A subset of

36 images from the full CASPR dataset were selected and

manually georeferenced as a source of ground truth.

The homography process begins by extracting feature

descriptors from each of the captured and query images

using each of the algorithms described above. Once de-

scriptors are extracted, a k-nearest-neighbor search with

k = 2 is performed between all pairs of captured and

query image feature descriptors using the Fast Library

for Approximate Nearest Neighbors (FLANN) [49]. Fol-

lowing this, Lowe’s Ratio Test compares the distances be-

tween pairs of matched feature descriptors to reject non-

distinct, false matches. Specifically, we check that the

Euclidean distance between the closest matched pair, m,

and the second-closest matched pair, n, is large enough

such that (m · distance) < τ × (n · distance). In the

case of SIFT and AKAZE, τ = 0.7. In the case of ORB,

τ = 0.8 to prevent over-rejection of matches. If there are

more than four feature descriptors, the perspective trans-

formation, H, can be found between IC and IQ. The

RANSAC algorithm, with a constant threshold of 15.0,

is used to select the best subset of matches. Once the

best subset of matches is found, a least-squares estimate

method is used to minimize back-projection error and re-

turn H. Any homogeneous point [xi, yi, 1] in IC can then

be mapped to [x′i, y
′
i, 1] in IQ using H. A visual example

of the homography mapping calculated using this process

is shown in Figure 2. Finally, position and orientation

information obtained during the homography process is

used to compute the coordinate-distance error between

the ground-truth coordinates of the CASPR image and

the estimated coordinates. The distance error is calcu-
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Figure 4. The average maximum number of

matches across all images in the query set, per-

method, for 15-m and 10-m GRD in SentinelHub

and Google Earth Engine, respectively.

lated as a summation of the Euclidean distances between

four longitudinal and latitudinal coordinates of the pro-

posed region and four ground-truth coordinates that are

manually acquired. We consider the difference between

the coordinates of the proposed location and the ground-

truth. To account for the skew of an image, the error

calculated between each corner are then added together.

Namely,

distance error =

4∑
i=1

((xi − x′i) + (yi − y′i))
2

where (xi, yi) is the proposed set of coordinates and

(x′i, y
′
i) are the ground-truth longitude and latitude coor-

dinates. After the mapping procedure is finished, images

can then be compared to existing imagery in Google Earth

as well as accurate road-network and point-of-interest

databases. Since the purpose of this experiment is to pin-

point the location of an image on a map, the longitude

and latitude coordinates of the location are considered the

primary metric as opposed to physical distance error. A

t-test is performed to test significance between datasets.

Results. This results section presents key quantita-

tive metrics on alignment accuracy and a comparison of

feature-extraction methods. Results from different GRDs

of map source imagery are also contrasted. Successes, lim-

itations, and applications of the pipeline are discussed.

Alignment Accuracy. To determine the success of the

image-registration methods across multiple configura-

tions, we varied the imagery data source and, in the case

of SentinelHub, query-image GRD. We conduct an analy-

sis of the performance of each method as a combination of

the total number of matches and error as the distance be-

tween ground-truth coordinates and coordinates proposed

by each model. Both the total number of matches and

distance error between proposed corner coordinates and
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Figure 5. The minimum summed distance error

across all images in the query set, per-method, for

15-m and 10-m GRD in SentinelHub and Google

Earth Engine, respectively.

ground-truth coordinates were recorded for each registra-

tion attempt. Imagery from both SentinelHub and Google

Earth Engine are tested for each method. SentinelHub

data comes from the Sentinel-2 Level-1C data product.

Level-1C pixel values are provided as top-of-atmosphere

reflectance, and imagery is orthorectified, 15-m GRD.

Query data from Google Earth Engine comes from the

harmonized Sentinel-2 Level-2A data product, which is a

processed version of associated Level-1C imagery. Level-

2A pixels are bottom-of-atmosphere reflectance values

with orthorectified, 10-m GRD sampling.

The distribution of the maximum number of matches

for each query set can be seen in Figure 4. The number

of matches is higher for AKAZE, LoFTR, and SIFT with

Google Earth Engine’s Sentinel-2 Level-2A imagery. The

results in Figure 5 show the median average distance error

between the proposed coordinates and the ground-truth

coordinates. For the AKAZE algorithm, the distance er-

ror for Google Earth Engine is significantly lower than

that of the SentinelHub dataset (p < 0.05), and thus de-

livers better accuracy. All other algorithms do not show

significant difference in error between the datasets. If

the noise in the algorithm is high due to a large num-

ber of matches, the mapping accuracy decreases, which

highlights the importance of match quality over match

quantity. Figures 6 and 7 show the difference in perfor-

mance of each algorithm when the SentinelHub data is

changed from 15-m to 30-m GRD.

The number of outliers and large variance in Figures 4

and 6 can be partially attributed to the large variance in

our CASPR dataset. The images range from urban envi-

ronments, such as Osaka, Japan, to more remote moun-

tainous terrain, such as Seron, Chile. The wide range of

imagery types leads to the large variance in number of

matches, as all methods find features easily in urban en-

vironments with sharp edges and straight lines. LoFTR

finds more features than other methods since it has the
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Figure 6. The average maximum number of

matches across all images in the query set using

SentinelHub, per-method. GRD varies from 15-m

to 30-m.

ability to extract features in low-texture regions.

Figure 7 shows the distance error in 30-m GRD im-

agery and in 15-m GRD imagery. AKAZE, in particu-

lar, shows a significant reduction in the distance error,

with p < 0.001 for 30-m GRD compared to 15-m GRD.

This follows from the higher average amount of features

matched at 30-m GRD compared to 15-m GRD in the

AKAZE dataset. This is most likely due to the higher-

level, more general features that are found at a higher

GRD. All other datasets do not demonstrate any statisti-

cally significant difference between 15-m GRD and 30-m

GRD. More samples would have to be collected to make

any claims of significance.

The high number of matches in LoFTR contribute to

a larger amount of variance in distance error, but this

can be attributed to matching in low-texture regions. Of

significant note is our use of LoFTR’s pretrained outdoor

model without fine-tuning. That is, we take the LoFTR

model and apply it directly to satellite imagery to achieve

accurate feature matching on the order of classic feature-

matching algorithms. It should be noted that the input

for LoFTR is a downsampled 640x480 image, which could

be considered an unfair comparison of its capability by re-

ducing the effective GRD. However, the basis of LoFTR

is a coarse-to-fine granular approach to feature extrac-

tion, which makes the difference in resolution less critical.

LoFTR is shown to have a very high variance in Figures 5

and 7, demonstrating that its accuracy is heavily depen-

dent on the input. It is suspected that this high variance

is due to the downsampling of the imagery performed in

LoFTR’s pipeline. Additionally, the number of matches

in low-texture regions is significantly different when using

LoFTR compared to other methods. Qualitatively, it can

be noted that these low-texture region matches tend to

be less conducive to accurate homography.

Overall, each algorithm performed well in mapping

CASPR imagery to known datasets. The distance errors
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Figure 7. The minimum summed distance error

across all images in the query set using Sentinel-

Hub, per-method. GRD varies from 15-m to 30-m.

Figure 8. A comparison of two images of Mamu-

taa from CASPR (left) and Google Earth (right)

depicts immense change over nearly six years.

in the coordinates calculated with each algorithm are not

significantly different from each other, with median er-

rors occurring around 0.04 deg2 for both 15-m and 10-m

GRD of SentinelHub and Google Earth, respectively. The

lowest observed median error can be seen in Figure 5 by

AKAZE for Google Earth Engine at around 0.02 deg2.

Temporal Analysis. These efforts have enabled higher

quality and more rapid research application of CASPR

imagery. An area of immense interest is temporal analysis

for change detection and characterization. Perhaps the

best example of this thus far is an image CASPR captured

of Maamutaa Island in the Maldives. At the time of this

writing, the most recent image of Maamutaa Island in

Google Earth, seen in Figure 8, was taken on April 7th,

2016.

The CASPR Maamutaa image was taken on February

25, 2022, nearly six years later. Manual geolocation of this
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image was rather difficult due to the significant change to

the landmass. The once-forested island has been cleared

and is now covered with artificial structures. Observing

such change is a primary goal of CASPR’s high-resolution,

low-GRD, and small form factor iSIM-90 imager. This

pipeline enables such observation and evaluation to be

automated.

Future Research. The capabilities of this pipeline

make STP-H7-CASPR imagery more actionable and valu-

able. With near-immediate mapping of imagery to pre-

cise locations, additional applications can be deployed to

characterize and evaluate change. These methods could

range from simpler, more classical options like delta anal-

ysis to more modern techniques like semantic segmenta-

tion through deep learning. Stacks of analysis-ready, ge-

olocated imagery at frequently revisited locations could

enable long-term assessment of area characteristics.

Since these feature-matching methods show promise of

finding features across multiple images, this methodology

can also be applied to astronomical imagery. This form of

mapping can be used for image registration across multi-

ple astronomical datasets to augment captures with pre-

vious data, providing a higher signal-to-noise ratio. By

using the pipeline shown in this paper with astronomical

imagery, stellar data can be stacked across datasets and

across various spectral filters.

The model used to find a homography with the LoFTR

method was provided by the authors of the LoFTR paper,

and was pretrained on an outdoor scene dataset. This

method directly applied this model to satellite imagery

with a very different sensor modality and feature space.

By fine-tuning the model on satellite imagery, higher de-

grees of geolocation accuracy could likely be achieved.

The absence of fine-tuning in our experiments is likely

a reason for the large variation in the measured LoFTR

distance error.

Conclusions. This research demonstrates a rapid and

effective means of satellite-image geolocation. This

method increases the capability of STP-H7-CASPR for

Earth observation. Upon downlink, an image can be

placed within a 0.04 deg2 global coordinate accuracy in

under one minute using accessible existing tools. LoFTR,

with a network pretrained on outdoor scenes, was shown

to perform well on satellite imagery with a different fea-

ture space, suggesting that space-based LoFTR is feasi-

ble for feature-matching. Our pipeline enables further

downstream tasks, such as imagery comparison, point-of-

interest tracking, and temporal-change analysis. These ef-

forts also open the door for future research in autonomous

change characterization powered by deep-learning meth-

ods.

Acknowledgements. This research was supported

by the NSF Center for Space, High-Performance, and Re-

silient Computing (SHREC) industry and agency mem-

bers and by the IUCRC Program of the National Science

Foundation under Grant No. CNS-1738783. The authors

would like to thank the CASPR development team, STP,

the Air Force Research Lab Space Vehicles Directorate

for their DoD sponsorship of CASPR, and other SHREC

students and member organizations.

References.

[1] S. Roffe, T. Schwarz, T. Cook, N. Perryman, J. Good-
will, E. Gretok, A. Phillips, M. Moran, T. Garrett, and
A. George, “CASPR: Autonomous sensor processing ex-
periment for STP-H7,” in Proceedings of the 34th An-
nual AIAA/USU Conference on Small Satellites. AIAA,
pp. 1–11, 2020.
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