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Abstract. In this paper, we present a landmark-free

technique to simultaneously localize a spacecraft around a

small celestial body and map the target shape, solely using

optical data. By triangulating surface features observed

through a small stereo baseline, a surface point cloud is

estimated. Multiple point-cloud observations can be reg-

istered with each other and used to both build a reference

shape model and localize the camera with respect to such a

reference map. This method does not rely on identifying

and matching surface landmarks through multiple images,

and hence it is more robust to lighting conditions and ob-

serving geometries.

Introduction. Navigating in the vicinity of small ce-

lestial bodies, such as asteroids and comets, is a crucial

yet demanding task required for flybys, close approach,

proximity operations, and landing. Optical data from the

onboard cameras are commonly used in this context as

they provide accurate surface-relative observations. The

latter are usually angle measurements of surface reference

points, also known as landmarks, relative to the observ-

ing camera. The identification, selection, and tracking

of known landmarks over multiple images is a standard

and effective approach which has been used for decades

to estimate the spacecraft motion as well as the tar-

get shape model, notably, using Stereophotoclinometry

(SPC).1 However, the surface appearance from the cam-

era perspective is subject to rapid and continuous evo-

lution due to changes in surface lighting and observing

geometry, caused by the spacecraft-surface-Sun relative

motion. As such, identifying the same landmark locations

over multiple images is known as a challenging task. Typ-

ically, this is performed by expert ground operators by

making use of prior knowledge such as predicted images

and the spacecraft orbit, and by assessing the quality of

the downloaded images. Hence, current landmark-based

navigation largely relies on human support and supervi-

sion.

The OSIRIS-REx mission pioneered a semi-

autonomous landmark-matching technique for visual

navigation during the Touch-and-Go maneuver, called

Natural Feature Tracking.2 However, this method relies

on a very high-resolution shape model of the landing

site and its surroundings, as well as the selection of a

high-quality set of landmarks, both obtained through

months of ground-based operations. In previous work,

Simultaneous Localization and Mapping (SLAM), and in

particular its feature-based1 implementations, repeatedly

1In this context, a feature represents the optical data cor-
responding to a surface landmark.

emerged as a successful framework for surface-relative

navigation at small bodies.3,4 However, the proposed

approaches were only tested on short time frames (e.g.,

a single small-body rotation), where changes in lighting

and observing geometries are small. For example, image

sets from the approach phase were used, where changes in

spacecraft latitude and Sun phase angle are small. While

such feature-based approaches may successfully perform

loop closure and localization in the above scenarios,

previous work did not tackle the more general problem

involving surface observations from arbitrary viewpoints

and lighting conditions, which is commonly encountered

during proximity operations (e.g., for surface flybys,

landing, and most non-hovering orbits). Additionally,

it has been shown that matching performance using

state-of-the-art visual features (such as SURF and ORB,

used in several asteroid-SLAM studies) is poor for severe

changes of the surface appearance.5 Given the challenges

and limitations associated to using traditional feature

matching for autonomous localization in this environ-

ment, we propose a landmark-free SLAM method based

on vision-based point-cloud registration. Point clouds

are very common datasets in robotics, and LIDAR-based

point clouds have been shown to enable robust and

autonomous navigation and mapping at small bodies in

the presence of uncertainty in the environment.6 The

objective of this work is to develop similar capabilities

for vision-based point clouds.

Method.

Map Building. A set of images, to be processed in pairs

of consecutive frames, is given. The stereo baseline be-

tween images in each pair should be small enough so that

accurate feature tracking can be performed. In the first

image of each pair, Shi-Tomasi7 features are detected and

then tracked to the second image in the pair, using the

Kanade-Lucas-Tomasi (KLT) algorithm.8,9 The idea is

that Shi-Tomasi features are usually very dense in tex-

tured images such as small-body surfaces, and hence the

corresponding tracks can be used to estimate a dense

point cloud. The relative camera pose between the two

views is estimated and the 3D point cloud is obtained by

triangulating the tracked features. Features with large

reprojection errors are rejected. Each image pair pro-

vides an estimated point cloud, which is registered to the

previous one using the Iterative Closest Point (ICP) algo-

rithm.10 Each view is added to the pose graph and loop

closure is currently performed by assuming knowledge of

the small-body rotation rate. After loop closure, pose-

graph optimization is executed, and the point clouds for

each image pair are aligned, downsampled, and denoised.
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Figure 1. Reference point cloud estimated during

the map-building step compared to a single point

cloud observed from a camera view. A large error

between the point-cloud positions is assumed, i.e.,

a bad initial guess in camera position is used for

point-cloud registration.

Localization. Once the reference point cloud is con-

structed, the spacecraft is localized by estimating a point

cloud in view from any pair of images, as previously de-

scribed. Then, ICP is performed to compute the rigid

transformation between the observed and the reference

point cloud, which in turn is used to localize the observ-

ing camera with respect to the map. In this process, the

spacecraft attitude is assumed to be known, i.e., ICP only

estimates the translation between the two point clouds

and not on the rotation, which is given. Current results

suggest that similar performance is obtained if this as-

sumption is relaxed.

Results. We tested the point-cloud SLAM algorithm

using a simulated scenario around the asteroid Bennu.

Two image sets with very different appearance are gener-

ated: a lower-latitude, lower Sun phase hovering trajec-

tory for the mapping step (Figure 4) and a higher latitude,

higher Sun phase hover for the localization step (Figure

3). A longitudinal displacement of 1◦ is used between

consecutive frames. A dense set of tracked features is ob-

tained, as shown in Figure 5. The obtained reference and

observed point clouds are compared in Figure 1. For the

localization step, a bad initial guess in the camera posi-

tion is assumed, to assess the robustness of the technique.

Finally, localization performance is shown in Figure 4: de-

spite the difference in appearance between the mapping

and localization image sets, the camera position is ac-

curately estimated. Notice that only the higher-latitude

portion of the point cloud is visible in the localization

image set, suggesting that this technique is suitable for

scenarios where only small portions of the map are visi-

ble.
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Figure 2. Camera position estimates compared to
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Figure 3. Sample simulated image of the asteroid

Bennu used for the map-building step. The observ-

ing camera radius from the asteroid center is 1 km,

its latitude is 0◦ and the Sun phase angle is 20◦.
The camera field-of-view is 40◦.

Figure 4. Sample simulated image of the asteroid

Bennu used for the localization step. The observ-

ing camera radius from the asteroid center is about

1.1 km, its latitude is about 27◦ and the Sun phase

angle is 40◦. The camera field-of-view is 40◦.

Figure 5. Feature tracks (yellow lines) obtained using the KLT algorithm to track features from the

first frame (red circles) to the second frame (green crosses), using an image pair from the localization

dataset. Such feature tracks are used to estimate the surface dense point cloud. This figure highlights

the high density of Shi-Tomasi features for this type of small-body surfaces.
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