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Abstract. Missions to small bodies rely heavily on op-

tical feature tracking for characterization and relative nav-

igation of the target body. While deep learning has led to

great advancements in computer vision, training and val-

idating data-driven models for space applications is chal-

lenging due to the limited availability of relevant anno-

tated data. Therefore, this paper introduces a large-scale

dataset comprised of over 115,000 annotated, real images

of 16 different small bodies captured during past and ongo-

ing missions. First, we perform an exhaustive evaluation

of both handcrafted and data-driven methods for feature

detection and description on small body imagery. Finally,

we train a deep feature detection and description network

using our data and demonstrate increased performance.

Introduction. There has been an increasing interest

in missions to small bodies (e.g., asteroids, comets) due

to their great scientific value.1 Feature tracking is an

integral component of small body shape reconstruction

and relative navigation methodologies. However, the cur-

rent state-of-the-practice in small body relative naviga-

tion relies on a manual approach where human opera-

tors extract salient surface features from images acquired

during an extended characterization phase to estimate a

collection of digital terrain maps (DTMs), local topogra-

phy and albedo maps. DTM construction typically in-

volves extensive human-in-the-loop verification and care-

fully designed image acquisition plans to achieve optimal

results.2,3 This lack of autonomy in mission procedures

limits mission capabilities and increases operational costs.

While automated feature tracking methods have been

investigated for autonomous small body relative naviga-

tion,4 researchers have had trouble capitalizing on recent

advances in deep learning due to the unavailability of rel-

evant, annotated data.5,6 To the best of our knowledge,

there exists no large-scale, annotated dataset comprised

entirely of real small body images. Indeed, previous work

has either relied entirely on simulated data7 or uncom-

prehensive (i.e., <150 images or restricted to a single

body) sets of real imagery.5,8 Moreover, operation in

space presents unique environmental (e.g., dynamic hard

lighting) and operational (e.g., significant scale and per-

spective changes) challenges that are likely not adequately

captured in datasets based on terrestrial imagery.

This paper presents a large-scale dataset comprised of

115,970 densely annotated, real images of 16 different

small bodies from legacy and ongoing deep space missions

to facilitate the study of deep learning for autonomous

navigation in the vicinity of a small body. The contri-

butions of this paper are as follows: (i) we present a

first-of-a-kind dataset for vision-based tasks in the vicin-

ity of a small body; (ii) we develop a novel benchmark-

ing suite and evaluate both handcrafted and data-driven

feature detection and description methods on real small

body imagery; (iii) we train a deep feature detection and

description network on small body imagery and demon-

strate increased performance on multiple benchmarks.

Data Generation. We leverage publicly available im-

ages and ancillary data (i.e., camera pose, camera cali-

bration, shape models) from both legacy and active small

body missions provided through NASA’s Planetary Data

System (PDS).9 Shape models (i.e., watertight, triangu-

lar surface meshes) are developed as part of the rela-

tive navigation pipeline of small body missions, typically

constructed using stereophotoclinometry.10 We lever-

age high-resolution shape models to generate dense depth

maps for each image, which are computed by backward-

projecting rays at each pixel in the image and recording

the intersection depth between the ray and shape model.

We also estimate a mask of the occluded regions of the

imaged surface for training (see Figure 1).

Evaluation. Performance is evaluated on a per image

pair basis using the metrics precision =# correct matches

/ # putative matches, recall = # correct matches / #

ground truth matches, and accuracy = # correct matches

& nonmatches /# features. Each method is limited to ex-

tract 5,000 features, and putative matches are computed

using mutual nearest neighbors. Matches are verified by

projecting each keypoint in the first image into the second

using the ground truth pose, calibration, and depth map,

and matches are verified by checking that the projected

coordinates are within 5 pixels of its match. Ground truth

matches are registered if there exists a keypoint within 5

pixels of the projected image coordinate. We classify cor-

rect nonmatches as keypoints which were not included in

the set of putative or ground truth matches.

Finally, poses are computed from the putative matches

by first estimating the essential matrix using the five-

point method11 and RANSAC with an inlier threshold

of 1 pixel, followed by SVD of the essential matrix to

determine the relative pose. We report the area under

the curve (AUC) of the cumulative error curve between

the estimated and ground truth poses at thresholds of 5◦,
10◦, and 20◦, where the pose error is the maximum of the

angular errors in rotation and translation.12

We benchmark both handcrafted (i.e., SIFT13) and

data-driven (i.e., SuperPoint,14 R2D2,15 and ASLFeat16)

features. These results are summarized in Table 1. SIFT

demonstrates competitive performance but suffers when

applied to datasets with harsher illumination. SuperPoint

achieves high recall but low precision and generally under

performs with respect to all other methods. ASLFeat con-
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Table 1. Feature performance with respect to preci-

sion (P), recall (R), accuracy (A), and pose AUC.
AUC

Dataset # Images Feature # Matches P R A @5◦ @10◦ @20◦

Cassini @ Epimetheus 133 SIFT 204 32.5 36.6 54.7 2.7 9.5 15.0

SuperPoint 396 13.6 26.1 59.2 2.6 7.5 12.8

R2D2 423 25.3 26.1 77.1 2.9 9.1 14.7

ASLFeat 386 27.4 29.0 74.7 2.7 8.2 13.7

Cassini @ Mimas 307 SIFT 340 14.3 15.1 41.1 0.2 0.2 0.4

SuperPoint 121 8.6 10.4 50.5 0.0 0.0 0.0

R2D2 209 13.8 8.8 75.5 0.1 0.1 0.1

ASLFeat 372 21.8 15.7 65.3 0.2 0.2 0.3

Dawn @ Ceres 3624 SIFT 1656 42.3 72.2 69.4 28.8 44.3 56.6

SuperPoint 442 42.9 75.7 70.1 13.1 28.3 43.5

R2D2 954 50.0 52.8 85.8 8.9 20.0 32.4

ASLFeat 1535 48.4 67.8 80.2 12.9 27.1 42.4

Dawn @ Vesta 2006 SIFT 1350 37.1 52.3 64.0 17.9 28.7 38.8

SuperPoint 506 38.7 55.0 65.8 11.3 21.3 32.7

R2D2 926 55.9 46.7 86.9 11.4 22.3 34.1

ASLFeat 1524 59.0 66.1 84.3 17.5 31.9 46.0

Hayabusa @ Itokawa 603 SIFT 217 4.8 5.0 35.8 1.9 3.3 4.8

SuperPoint 79 7.3 12.7 42.3 1.7 3.1 5.4

R2D2 339 10.7 9.4 67.0 2.6 4.6 8.0

ASLFeat 338 13.5 11.3 47.5 2.2 4.2 7.6

OSIRIS-REx @ Bennu 1789 SIFT 1317 13.7 15.3 55.2 5.6 8.8 11.8

SuperPoint 747 18.1 20.3 55.4 3.8 7.3 11.1

R2D2 502 29.3 18.3 84.7 4.2 8.6 13.8

ASLFeat 1378 33.1 30.9 68.7 8.0 14.4 20.9

Rosetta @ 67P 3039 SIFT 1168 15.7 16.6 44.7 2.4 4.8 7.7

SuperPoint 485 17.6 20.7 49.9 1.6 3.6 6.4

R2D2 634 20.2 16.5 79.3 1.9 3.9 7.1

ASLFeat 1147 25.0 24.0 62.8 3.4 6.4 10.6

Rosetta @ Lutetia 40 SIFT 283 23.7 31.7 46.6 5.9 9.8 15.9

SuperPoint 381 26.7 30.7 55.5 4.2 8.0 16.2

R2D2 588 33.2 25.6 74.7 3.1 6.0 13.3

ASLFeat 970 42.9 35.0 71.9 6.0 12.1 23.8

sistently ranks among the top performing methods with

respect to all datasets. Therefore, we selected ASLFeat

for end-to-end training.

Learning Features from Small Body Imagery.

We train ASLFeat using a procedure similar to the

original implementation16 with an approximate 90/10

train/test split. We withhold data corresponding to

4 different small bodies with variable surface charac-

teristics from training, i.e., Epimetheus, Mimas, 25143

Itokawa, and 21 Lutetia. This will test the network’s

ability to reliably compute features upon arrival at a pre-

viously unexplored body. The network is also tested

on held-out images of small bodies it observed during

training. The ASLFeat model trained on small body

imagery, i.e., ASLFeat-CVGBEDTRPJMU, is compared

against the pretrained model in Table 2. ASLFeat-

CVGBEDTRPJMU consistently outperforms the pre-

trained model with respect to our metrics. Importantly,

our model achieves higher matching precision and pose

AUC on almost all novel testing instances.

Acknowledgements. This work was supported by a

NASA Space Technology Graduate Research Opportu-

nity.

References.

[1] M. A. Barucci, E. Dotto, and A. C. Levasseur-Regourd,
“Space missions to small bodies: asteroids and cometary
nuclei,” Astronomy and Astrophysics Review, vol. 19,
no. 48, pp. 1–29, 2011.

[2] O. S. Barnouin et al., “Digital terrain mapping by the
OSIRIS-REx mission,” Planetary and Space Science,
vol. 180, p. 104764, 2020.

Table 2. ASLFeat-CVGBEDTRPJMU compared to

pretrained model.
AUC

Dataset Feature # Matches P R A @5◦ @10◦ @20◦

Cassini @ Epimetheus† ASLFeat 386 27.4 29.0 74.7 2.7 8.2 13.7

ASLFeat-CVGBEDTRPJMU 396 28.9 27.5 74.1 2.7 8.6 14.0

Cassini @ Mimas† ASLFeat 372 21.8 15.7 65.3 0.2 0.2 0.3

ASLFeat-CVGBEDTRPJMU 328 23.6 14.9 67.1 0.0 0.1 0.2

Dawn @ Ceres ASLFeat 1535 48.4 67.8 80.2 12.9 27.1 42.4

ASLFeat-CVGBEDTRPJMU 1514 52.8 71.5 82.1 15.9 31.6 46.9

Dawn @ Vesta ASLFeat 1524 59.0 66.1 84.3 17.5 31.9 46.0

ASLFeat-CVGBEDTRPJMU 1412 70.3 69.7 87.4 17.5 33.0 48.7

Hayabusa @ Itokawa† ASLFeat 338 13.5 11.3 47.5 2.2 4.2 7.6

ASLFeat-CVGBEDTRPJMU 363 15.2 11.0 53.7 2.9 5.0 8.8

OSIRIS-REx @ Bennu ASLFeat 1378 33.1 30.9 68.7 8.0 14.4 20.9

ASLFeat-CVGBEDTRPJMU 858 34.2 28.4 79.5 6.7 12.6 19.3

Rosetta @ 67P ASLFeat 1147 25.0 24.0 62.8 3.4 6.4 10.6

ASLFeat-CVGBEDTRPJMU 837 30.4 23.9 69.8 4.2 7.9 13.4

Rosetta @ Lutetia† ASLFeat 970 42.9 35.0 71.9 6.0 12.1 23.8

ASLFeat-CVGBEDTRPJMU 778 41.3 31.1 76.3 8.4 13.2 22.3

† No images of this body were included in the training set

[3] E. Palmer et al., “Practical stereophotoclinometry for
modeling shape and topography on planetary missions,”
Planetary Science, vol. 3, no. 102, pp. 1–16, 2022.

[4] B. J. Morrell, J. Villa, and A. Havard, “Automatic feature
tracking on small bodies for autonomous approach,” in
ASCEND, pp. 1–15, 2020.

[5] T. Fuchs et al., “Enhanced flyby science with onboard
computer vision: Tracking and surface feature detection
at small bodies,” ESS, vol. 2, no. 10, pp. 417–434, 2015.

[6] J. Song, D. Rondao, and N. Aouf, “Deep learning-based
spacecraft relative navigation methods: A survey,” Acta
Astronautica, vol. 191, pp. 22–40, 2022.

[7] M. Pugliatti, M. Maestrini, P. Di Lizia, and F. Topputo,
“On-board small-body semantic segmentation based on
morphological features with U-Net,” in AAS/AIAA Space
Flight Mechanics Meeting, pp. 1–20, 2021.

[8] H. Lee, H.-L. Choi, D. Jung, and S. Choi, “Deep neu-
ral network-based landmark selection method for opti-
cal navigation on lunar highlands,” IEEE Access, vol. 8,
pp. 99010–99023, 2020.

[9] “NASA PDS.” https://pds.nasa.gov/.

[10] R. W. Gaskell et al., “Characterizing and navigating small
bodies with imaging data,” Meteoritics & Planetary Sci-
ence, vol. 43, no. 6, pp. 1049–1061, 2008.

[11] D. Nistér, “An efficient solution to the five-point relative
pose problem,” TPAMI, vol. 26, no. 6, pp. 756–770, 2004.

[12] P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Ra-
binovich, “SuperGlue: Learning feature matching with
graph neural networks,” in CVPR, pp. 4938–4947, 2020.

[13] D. G. Lowe, “Distinctive image features from scale-
invariant keypoints,” IJCV, vol. 60, no. 2, pp. 91–110,
2004.

[14] D. DeTone, T. Malisiewicz, and A. Rabinovich, “Super-
Point: Self-supervised interest point detection and de-
scription,” in CVPR Workshops, pp. 337–349, 2018.

[15] J. Revaud, C. De Souza, M. Humenberger, and P. Wein-
zaepfel, “R2D2: Reliable and repeatable detector and de-
scriptor,” in NeurIPS, pp. 1–11, 2019.

[16] Z. Luo et al., “ASLFeat: Learning local features of ac-
curate shape and localization,” in CVPR, pp. 6589–6598,
2020.

Space Imaging Workshop. Atlanta, GA.

10-12 October 2022

2

https://pds.nasa.gov/


(a) Image (b) Landmark map (c) Depth map (d) Mask

Figure 1. Example data products.
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Figure 2. Qualitative comparison of matching performance. Correct matches are drawn in green and

the keypoints of incorrect matches are drawn in red.
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Figure 3. Qualitative comparison between pretrained model (left) and ASLFeat-CVGBEDTRPJMU

(right) feature matches. Correct matches are drawn in green, and the keypoints of incorrect matches are

drawn in red.
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