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Abstract. Missions to small bodies rely heavily on op-
tical feature tracking for characterization and relative nav-
igation of the target body. While deep learning has led to
great advancements in computer vision, training and val-
idating data-driven models for space applications is chal-
lenging due to the limited availability of relevant anno-
tated data. Therefore, this paper introduces a large-scale
dataset comprised of over 115,000 annotated, real images
of 16 different small bodies captured during past and ongo-
ing missions. First, we perform an exhaustive evaluation
of both handcrafted and data-driven methods for feature
detection and description on small body imagery. Finally,
we train a deep feature detection and description network
using our data and demonstrate increased performance.

Introduction. There has been an increasing interest
in missions to small bodies (e.g., asteroids, comets) due
to their great scientific value!!  Feature tracking is an
integral component of small body shape reconstruction
and relative navigation methodologies. However, the cur-
rent state-of-the-practice in small body relative naviga-
tion relies on a manual approach where human opera-
tors extract salient surface features from images acquired
during an extended characterization phase to estimate a
collection of digital terrain maps (DTMs), local topogra-
phy and albedo maps. DTM construction typically in-
volves extensive human-in-the-loop verification and care-
fully designed image acquisition plans to achieve optimal
results 2B This lack of autonomy in mission procedures
limits mission capabilities and increases operational costs.

While automated feature tracking methods have been
investigated for autonomous small body relative naviga-
tion,4
advances in deep learning due to the unavailability of rel-
evant, annotated data28 To the best of our knowledge,
there exists no large-scale, annotated dataset comprised
entirely of real small body images. Indeed, previous work
has either relied entirely on simulated data’ or uncom-
prehensive (i.e., <150 images or restricted to a single
body) sets of real imagery.5’8 Moreover, operation in
space presents unique environmental (e.g., dynamic hard
lighting) and operational (e.g., significant scale and per-
spective changes) challenges that are likely not adequately
captured in datasets based on terrestrial imagery.

researchers have had trouble capitalizing on recent

This paper presents a large-scale dataset comprised of
115,970 densely annotated, real images of 16 different
small bodies from legacy and ongoing deep space missions
to facilitate the study of deep learning for autonomous
navigation in the vicinity of a small body. The contri-
butions of this paper are as follows: (i) we present a
first-of-a-kind dataset for vision-based tasks in the vicin-
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ity of a small body; (ii) we develop a novel benchmark-
ing suite and evaluate both handcrafted and data-driven
feature detection and description methods on real small
body imagery; (iii) we train a deep feature detection and
description network on small body imagery and demon-
strate increased performance on multiple benchmarks.

Data Generation. We leverage publicly available im-
ages and ancillary data (i.e., camera pose, camera cali-
bration, shape models) from both legacy and active small
body missions provided through NASA’s Planetary Data
System (PDS).9 Shape models (i.e., watertight, triangu-
lar surface meshes) are developed as part of the rela-
tive navigation pipeline of small body missions, typically
constructed using stereophotoclinometry.lo
age high-resolution shape models to generate dense depth
maps for each image, which are computed by backward-
projecting rays at each pixel in the image and recording
the intersection depth between the ray and shape model.
We also estimate a mask of the occluded regions of the
imaged surface for training (see Figure [1f).

We lever-

Evaluation. Performance is evaluated on a per image
pair basis using the metrics precision = # correct matches
/ # putative matches, recall = # correct matches / #
ground truth matches, and accuracy = # correct matches
& nonmatches / # features. Each method is limited to ex-
tract 5,000 features, and putative matches are computed
using mutual nearest neighbors. Matches are verified by
projecting each keypoint in the first image into the second
using the ground truth pose, calibration, and depth map,
and matches are verified by checking that the projected
coordinates are within 5 pixels of its match. Ground truth
matches are registered if there exists a keypoint within 5
pixels of the projected image coordinate. We classify cor-
rect nonmatches as keypoints which were not included in
the set of putative or ground truth matches.

Finally, poses are computed from the putative matches
by first estimating the essential matrix using the five-
point method™ and RANSAC with an inlier threshold
of 1 pixel, followed by SVD of the essential matrix to
determine the relative pose. We report the area under
the curve (AUC) of the cumulative error curve between
the estimated and ground truth poses at thresholds of 5°,
10°, and 20°, where the pose error is the maximum of the

angular errors in rotation and translation 12

We benchmark both handcrafted (i.e., SIFT*?) and
data-driven (i.e., SuperPoin‘c,14 R2D2,15 and ASLFeath)
features. These results are summarized in Table[[l SIFT
demonstrates competitive performance but suffers when
applied to datasets with harsher illumination. SuperPoint
achieves high recall but low precision and generally under
performs with respect to all other methods. ASLFeat con-



Table 1. Feature performance with respect to preci-
ston (P), recall (R), accuracy (A), and pose AUC.

Table 2. ASLFeat-CVGBEDTRPJMU compared to
pretrained model.

| AuC | AuC
Dataset # Images  Feature # Matches P R A ‘ @5°  @10° @20° Dataset Feature # Matches P R A ‘ @°  @0°  @20°
Cassini @ Epimetheus 133 SIFT 204 325  36.6 54.7 2.7 9.5 15.0 Cassini @ Epimetheus’  ASLFeat 386 274 29.0 747 2.7 8.2 13.7
SuperPoint 396 13.6 26.1 59.2 2.6 75 12.8 ASLFeat-CVGBEDTRPJMU 396 28.9 275 74.1 2.7 8.6 14.0
R2D2 423 253 261 771 2.9 9.1 147 Cassini @ Mimas! ASLFeat 372 218  15.7 65.3 0.2 0.2 0.3
ASLFeat 386 274 29.0 74.7 2.7 8.2 13.7 ASLFeat-CVGBEDTRPJMU 328 23.6 14.9 67.1 0.0 0.1 0.2
Cassini @ Mimas 307 SIFT 340 14.3 15.1 411 0.2 0.2 0.4 Dawn @ Ceres 1535 48.4 67.8 80.2 129 271 42.4
SuperPoint. 121 8.6 104 50.5 0.0 0.0 0.0 1514 52.8 71.5 82.1 15.9 31.6 46.9
R2D2 200 138 88 755 0.1 0.1 01 Dawn @ Vesta ASLFeat 1524 500 661 843 | 175 319 46.0
ASLFeat 372 218 157 653 0.2 0.2 03 ASLFeat-CYGBEDTRPJMU 1412 70.3 697 874 | 175  33.0 487
Dawn @ Ceres 3624 SIFT 1656 423 722 694 | 28.8  44.3 56.6  Hayabusa @ Itokawa' ASLFeat 338 135 113 475 2.2 4.2 7.6
SuperPoint 442 429 757 701 | 131 283 435 ASLFeat-CVGBEDTRPJMU 363 15.2 1.0 53.7 2.9 5.0 8.8
212 954 5 9 32.
f2b2 94 500 528 858 89 200 324 OSIRIS REx @ Bennu ASLFeat 1378 331 30.9 68.7 8.0 144 209
ASLFeat 1585 484 678 80.2 129 271 424 ASLFeat-CVGBEDTRPJMU 858 34.2 284 79.5 126 19.3
Dawn @ Vesta 2006 SIFT 1350 371 523 640 | 179 27 388 oot ASLEeat a7 0 220 628 | 34 64 106
SuperPoint 506 38.7 55.0 65.8 113 21.3 32.7 ASLFeat-CVGBEDTRPJMU 837 30.4 23.9 69.8 4.2 7.9 13.4
R2D2 926 55.9 46.7 86.9 11.4 223 34.1
Rosetta @ Lutetiat ASLFeat 970 42.9 35.0 71.9 6.0 121 23.8
ASLFeat 1524 59.0 66.1 84.3 17.5 319 46.0
ASLFeat-CVGBEDTRPJMU 778 41.3 311 76.3 8.4 13.2 22.3
Hayabusa @ Ttokawa 603 SIFT 217 4.8 5.0 35.8 1.9 3.3 4.8 . . P
vabusa @ ftokaw ’ ’ ’ T No images of this body were included in the training set
SuperPoint. 79 7.3 12.7 42.3 1.7 3.1 5.4
R2D2 339 107 94 67.0 | 26 46 8.0
ASLFeat 338 185 113 475 2.2 42 7.6
OSIRIS-REx @ Bennu 1789 SIFT 1317 13.7 15.3 55.2 5.6 8.8 11.8 « . .
SuperPoint s 181 208 wma | ss rs 1w 3] E. Palmer et al., “Practical stereophotoclinometry for
oD 503 99 3 9 5 o P H 3 H ”
R2D2 502 293 183 847 | 42 86 138 modeling shape and topography on planetary missions,
ASLFeat 1878 331 309 687 | 8.0 144 209 .
o Br Planetary Science, vol. 3, no. 102, pp. 1-16, 2022.
Rosetta @ 67P 3039 SIFT 1168 157 166 447 | 24 48 71
ey 28 L . “ 1
SuperPoint w5 16 201 19 | we 36 ea 4] B.J.Morrell, J. Villa, and A. Havard, “Automatic feature
no o a 3 H ” 3
R2D2 634 202 165 793 | 19 39 71 tracking on small bodies for autonomous approach,” in
ASLFeat 1147 25.0 240 628 | 34 64 106
e s s ASCEND, pp. 1-15, 2020.
Rosetta @ Lutetia 40 SIFT 283 237 317 466 | 59 98 159
59 98 « . .
SuperPoint, 381 26.7 30.7 55.5 4.2 8.0 16.2 [5] T' FuChS et a1'7 Enhanced ﬂyby science Wlth Onboard
R2D2 S8 32 26 74T | 31 60 133 computer vision: Tracking and surface feature detection
Fe: T 3 ”
ASLFeat 970 429 350 1I | 60 121 238 at small bodies,” ESS, vol. 2, no. 10, pp. 417-434, 2015.

sistently ranks among the top performing methods with
respect to all datasets. Therefore, we selected ASLFeat
for end-to-end training.

Learning Features from Small Body Imagery.
We train ASLFeat using a procedure similar to the
original implementa‘cion16 with an approximate 90/10
train/test split. We withhold data corresponding to
4 different small bodies with variable surface charac-
teristics from training, i.e., Epimetheus, Mimas, 25143
Itokawa, and 21 Lutetia. This will test the network’s
ability to reliably compute features upon arrival at a pre-
viously unexplored body. The network is also tested
on held-out images of small bodies it observed during
training. The ASLFeat model trained on small body
imagery, i.e., ASLFeat-CVGBEDTRPJMU, is compared
against the pretrained model in Table ASLFeat-
CVGBEDTRPJMU consistently outperforms the pre-
trained model with respect to our metrics. Importantly,
our model achieves higher matching precision and pose
AUC on almost all novel testing instances.
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(a) Image (b) Landmark map  (c) Depth map
Figure 1. Example data products.

SIFT SuperPoint R2D2 AsLFeat
Figure 2. Qualitative comparison of matching performance.

Correct matches are drawn in green and
the keypoints of incorrect matches are drawn in red.

Figure 3. Qualitative comparison between pretrained model (left) and ASLFeat-CVGBEDTRPJMU

(right) feature matches. Correct matches are drawn in green, and the keypoints of incorrect matches are
drawn in red.

Space Imaging Workshop. Atlanta, GA.

10-12 October 2022



