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Abstract. The exploration of small bodies is one of

the frontiers of space exploration. With the advent of

small spacecraft, the number of proposed missions is in-

creasing. Innovative mission concepts for the large-scale

exploration of the small body population are being studied.

Increased spacecraft autonomy is one of the enabling tech-

nologies for such missions. The objective of this work is

to assess the feasibility of simultaneously estimating the

state of the spacecraft, a set of landmarks on the tar-

get and the asteroid characteristics considering a single

spacecraft equipped with a monocular camera.

Introduction. The exploration of minor bodies has

recently gained significant interest in the space commu-

nity because of their importance from the scientific and

technological point of view. Asteroids are remnants from

the formation period of the Solar System, and as such

they offer a unique opportunity to understand the his-

tory and future evolution of inner planets. Furthermore,

they store a vast amount of precious materials that could

be used both on Earth and in space.1 The diversity of

small bodies in the Solar System has been proven by the

dedicated space missions of the last two decades. More

missions are planned in the near future, some of which

are specifically designed for small spacecraft (e.g. M-

ARGO2). Furthermore, innovative mission concepts are

being developed to achieve large scale exploration of as-

teroids in the Solar System.3 However, such missions re-

quire a significant increase in spacecraft autonomy with

respect to the current paradigm, which is based mostly

on ground-in-the-loop monitoring and operations. Not

only this increases the mission costs, but it also limits

the scientific return of the mission because of the lack of

real-time control, that limits the spacecraft to safe tra-

jectories. Furthermore, missions to small bodies are often

characterized by a large uncertainty about the character-

istics of the target (e.g., shape and rotation), especially

when considering small asteroids. Currently, considerable

effort by ground operators is needed to characterize the

target body and navigate the spacecraft around it.4

Simultaneous Localization and Mapping. The

problem of building a consistent map of the environment

while at the same time estimating the pose of a mobile

platform is known in the robotic community as Simulta-

neous Localization and Mapping (SLAM). Theoretically,

this kind of algorithm could enable spacecraft operations

around completely unknown bodies. In the last decades

many SLAM solutions have been proposed. They can be

mainly divided in two categories: visual SLAM, that is

based on optical images, and lidar SLAM, that instead

relies on lidar sensors.5 Visual SLAM has gained sig-

nificant popularity because of the improvements in com-

puter vision algorithms. For space applications, cameras

are among the most used sensors since they require low

power, mass and volume but at the same time provide sig-

nificant information about the surrounding environment.

Different variations of SLAM algorithms exist for monoc-

ular, stereo and RGB-D cameras. However, the depth

information provided by stereo and depth cameras is typ-

ically available only at limited distance (meters, or tens

of meters), thus they are not applicable when considering

the typical range of spacecraft orbits, even in the case of

close proximity operations around small bodies. There-

fore, monocular cameras have to be considered. Visual

SLAM algorithms can be divided in two main categories:

direct and indirect.6 The former is based on direct im-

age alignment by minimization of the photometric error.

The latter instead relies on processing images to obtain a

set of distinct features that are tracked or matched across

subsequent frames. Hybrid approaches also exist, that

are generally based on direct image alignment in subse-

quent frames and feature extraction only on a subset of

images.7 Typical SLAM algorithms estimate the environ-

ment map and the pose of the robot, which is composed

by its position and orientation. However, the estimated

state vector can be enlarged to include other quantities

of interest, such as the probe velocity.

Methodology. In this work, a spacecraft operating

in close proximity of an asteroid is considered. An Ex-

tended Kalman Filter (EKF) is used to estimate the po-

sition and velocity of the satellite with respect to the

target, its gravitational parameter and a map of the as-

teroid, composed by a set of discrete landmarks. The

EKF dynamical model accounts only for the asteroid’s

gravitational attraction. The position and velocity of the

spacecraft are estimated in an inertial reference frame,

while the landmark positions in an asteroid-fixed refer-

ence frame. In this preliminary study the rotational state

of the asteroid is assumed to be known. Furthermore, it

is assumed that the initial position of the spacecraft is

known, and that a preliminary estimate of the asteroid’s

gravitational parameter is available to initialize the EKF.

Finally, a star tracker is assumed to be available to esti-

mate the spacecraft attitude with respect to the inertial

reference frame. A feature-based SLAM approach is con-

sidered. The EKF is fed by the line-of-sight measurements

obtained by detecting and tracking features across subse-

quent frames. The image processing pipeline is simulated

employing high-fidelity images rendered using Blender∗

and a procedural minor body generator tool.8 An ex-

ample of the resulting simulated images is shown in Fig-

∗http://www.blender.org - Last accessed on 17/09/2022.
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ure 1, which is obtained from a shape model of asteroid

(101955) Bennu, to which boulders of various dimensions

are added. The image processing pipeline works as fol-

lows. First, SURF features are extracted from the image.

The 100 strongest features are selected and are matched

with those from the previous frame. Known features, i.e.

features that had already been matched previously, are

used to update the EKF solution, while newly matched

features are used to initialize new landmarks in the EKF

map. Landmarks are represented using the inverse depth

parametrization, a formulation that improves the linearity

of the measurement equations.9 To improve the quality

of the produced map and to avoid excessive growth of the

EKF state vector, features that have been matched less

than a user-specified amount of times are removed from

the state vector.

Results. The simulation scenario reproduces that of

a spacecraft in the characterization phase of an asteroid

similar to Bennu. The spacecraft is initially positioned at

a distance of about 3 km from the asteroid. The trajec-

tory in the asteroid-fixed frame is represented in Figure 2.

An ideal camera pointing towards the centre of the aster-

oid is assumed, but a representative star tracker error of

10 arcseconds on each axis is considered. The simulation

spans one rotational period of the asteroid, which cor-

responds to about 4.3 hours. The simulation is stopped

after one period because no loop closure mechanisms have

been implemented yet in the image processing architec-

ture. Images are taken at one-minute intervals. The simu-

lated camera is characterized by a 1024x1024 resolution,

100 mm focal length and 8 degrees field of view. The

gravitational parameter of the asteroid is set to 5.2329
m3

s2
, and its standard deviation at the beginning of the

simulation to the 10% of the true value. In the EKF, the

feature location error in the image is assumed to be rep-

resented by a Gaussian noise with 0 mean and a standard

deviation of 2 pixels. As for the landmarks, the standard

deviation employed for the initialization of the inverse

depth parameter is set to 5× 10−5 1
m , which corresponds

to about 500 m at a distance of 3 km. Finally, the number

of minimum matches to keep a landmark in the EKF map

is set to 8. The process noise matrix is currently fixed,

with a noise standard deviation of 0.01 m for the position

and 10−5 m
s for the velocity. The results for the position

and velocity are presented in Figure 4. The estimation of

the velocity performs well. The error is very small and

well within the formal uncertainty of the EKF. As for the

position, the error is also small, in the order of 0.1% of

the spacecraft range, but some inconsistency with respect

to the formal covariance is observed. This may be due to

the fact that the image-to-image feature matching pro-

duces an accumulation of the error of the feature position

over time that is not accurately captured by the formal

covariance. The gravitational parameter estimation error

is presented in Figure 3. The performance is consistent,

and the initial error is significantly reduced during the

simulation, despite its limited time span. Finally, the per-

formance of the shape reconstruction is shown in Figure

5. The histogram shows the probability distribution of

the reconstruction error, computed as the minimum dis-

tance between the reconstructed landmark positions and

the true shape model. The error is shown as percentage

with respect to Bennu’s mean radius (262.5 m), and its

mean value is 1.69% (4.44 m).

Conclusion. This work confirms that SLAM algo-

rithms are suitable for spacecrafts operating in proxim-

ity of an asteroid. Even a single spacecraft equipped

with a monocular camera manages to obtain a good lo-

calization and mapping accuracy. Future work will be

focused on expanding the estimation process to the aster-

oid rotational state and on improving the image process-

ing pipeline with the capability to perform loop closure.

Furthermore, alternatives to the EKF formulation and to

the feature matching algorithm used here will be inves-

tigated (e.g., the Kanade-Lucas-Tomasi feature tracking

algorithm10).
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Figure 1. Example of the simulated images used in

the image processing pipeline.

Figure 2. Spacecraft trajectory in the asteroid-fixed

frame and asteroid shape model.
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Figure 3. EKF gravitational parameter estimation

error and formal uncertainty.
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(a) Position error.
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(b) Velocity error.

Figure 4. EKF position and velocity estimation er-

ror and formal uncertainty.

0 1 2 3 4 5 6 7

error [%]

0

0.05

0.1

0.15

0.2

0.25

p
ro

b
a

b
ili

ty

Figure 5. Histogram of the shape reconstruction er-

ror, shown as percentage of Bennu’s mean radius.
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