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Abstract. This work provides a method for intrin-

sic camera calibration from a single conic correspondence

when the image is an ellipse. Given that images of plan-

etary bodies resemble ellipses, the proposed method is at-

tractive for onboard spacecraft camera calibration. This

work explores the feasibility of the proposed method when

applied to a planet’s horizon.

Introduction. Onboard spacecraft cameras are an

immense sensing asset for onboard optical navigation

(OPNAV). OPNAV methods enable spacecraft to fulfill

their stringent navigation requirements and all rely on a

calibrated camera for successful integration. For the case

of spacecraft implementing OPNAV near an ellipsoidal

planetary body, this paper considers using the image of

the planet itself to calibrate the spacecraft camera’s in-

trinsic parameters.

It is well understood that the imaged conic A follows

the equality

sKTAK = B (1)

where A,B,K ∈ R3×3 and s is an unknown scale coeffi-

cient. K denotes the intrinsic camera calibration matrix,

and B is the reference conic. When B is the apparent

conic of an ellipsoid, the following equation gives B as

B = SrrTS − (rTSr − 1)S (2)

where S is the ellipsoid’s shape matrix and r is the ob-

server’s relative position, respectively.1 Information from

the spacecraft’s current state and SPICE kernels inform

B. The task of camera calibration seeks a solution for K

given known A and B in Eq. (1). Prior works recognize

Eq. (1) is non-linear with respect toK and require at least

two imaged A for a solution.2–4 To our knowledge, this

work provides the first closed-form solution for K from

a single conic. The requirement of a single conic corre-

spondence enables camera calibration from the image of

a single planet.

Derivation. This section provides a brief derivation

of the proposed camera calibration algorithm. We find it

convenient first to partition K into sub-blocks

K ≜

[
K11 K12

01×2 1

]
(3)

where

K11 ≜

[
dx γ

0 dy

]
and K12 ≜

[
up
vp

]
. (4)

Similarly, we’ll also block partitions A and B as follows

A ≜

[
A11 A12

AT
12 A22

]
, B ≜

[
B11 B12

BT
12 B22

]
(5)

where A11, B11 ∈ R2×2, A12, B12 ∈ R2×1, and

A22, B22 ∈ R1×1. Substituting the block-partitioned ma-

trices reduces Eq. (1) to the system of equations

sKT
11A11K11 = B11

sKT
11(A11K12 +A12) = B12

s(KT
12A11 +AT

12)K11 = BT
12

sKT
12(A11K12 + 2A12) + sA22 = B22

. (6)

We’ll draw attention to the following sub-block equality

sKT
11A11K11 = B11 (7)

and apply the det(•) operator to give

s2det(K11)
2det(A11) = det(B11) (8)

Interestingly, due to K’s upper triangular structure

det(K) = det(K11)det(1) = det(K11). (9)

This property ofK enables us to solve for s directly. First,

applying the det(•) to Eq. (1) gives

det(sKTAK) = s3det(K11)
2det(A) = det(B) (10)

from which dividing it by Eq. (8) and re-arranging gives

the exact expression

s =
det(B)det(A11)

det(A)det(B11)
(11)

in terms of known A and B. With s known, we can return

to Eq. (8). It is well known that for ellipses, det(A11) > 0.

Applying the sign(•) to Eq. (8) gives

sign(s2det(K11)
2det(A11)) = sign(det(B11)) (12)

which reduces to

sign(det(B11)) = sign(det(A11)) > 0. (13)

Considering A11, B11 ∈ R2×2 , A11 and B11 have strictly

positive or strictly negative eigenvalues. To ensure A11

and B11 are strictly positive-definite, we modify A and B

to
A = αA

B = βB
(14)

where α = sign(trace(A11)) and β = sign(trace(B11)).

With this modification, sA11 and B11 are symmetric pos-

itive definite which enables Cholesky decompositions

B11 = LBLT
B = RT

BRB

sA11 = LALT
A = RT

ARA

(15)
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where L• and R• are lower and upper triangular matrices,

respectively. Substituting LA and LB produces

KT
11LALT

AK11 = LBLT
B (16)

which we can then equate

LT
AK11 = LT

B (17)

and solve

K11 = L−T
A LT

B = R−1
A RB (18)

in exact terms. With K11 known, we move on to the

following sub-block equality

sKT
11(A11K12 +A12) = B12 (19)

and re-arrange to

K12 = A−1
11

(
(sKT

11)
−1B12 −A12

)
(20)

and solve for K12. All pieces of information of unknown

K are now known.

Simulation Results. We simulate planetary bodies

of varying ellipsoid shapes and pointing geometries to as-

sess our method’s camera calibration performance. Ta-

ble 1 details the semi-axes values used to model each ellip-

soid in terms of the planet’s polar radius Rp. We examine

Table 1. Ellipsoid Semi-axes

Ellipsoid-Type a (Rp) b (Rp) c (Rp)

Sphere 1.0 1.0 1.0

Oblate 1.5 1.5 1.0

Triaxial 3.0 2.0 1.0

the method’s sensitivity to ellipse-fit error by perturbing

the semi-major/minor axes and center coordinates of the

imaged ellipse A with Gaussian noise ∼ N (0, σ2). Here

the proportionality relationship

A ∝ K−TBK−1 (21)

gives the imaged ellipse A in pixel coordinates,1 similar

to what an observer would compute. The Gaussian noise

perturbation models the effects of edge localization error

typical of off-the-shelf edge detection algorithms. After

perturbation, we compare the estimated intrinsic param-

eters with the ground truth and obtain the residual.

The simulation performs a sweep of σ values and ob-

tains the root-sum-square (RSS) of 1000 Monte Carlo runs

for each value of σ. To generalize the findings, we di-

vide the RSS value by the ground-truth value to obtain

the normalized root-sum-square (NRSS). Figure 1 reports

the NRSS of focal lengths and pixel centers for varying

ellipsoid shapes under the nadir and off-nadir pointing

geometries. In this simulation, the off-nadir pointing ge-

ometry places the planet center at a right ascension and

declination angles of 2.86◦ from the camera boresight.

Figure 1. Intrinsic Calibration for Varying Point-

ing and Varying Ellipsoids

From Fig.1, the proposed method estimates the focal

lengths with greater precision than the center coordinates.

Since K12 is computed from K11, the estimation error of

K11 propagates to the center coordinate estimates. How-

ever, both follow similar trends where nadir-pointing con-

ditions for all ellipsoids provide identical estimates, and

off-nadir pointing conditions differ. We are encouraged to

see that off-nadir pointing conditions result in NRSS val-

ues essentially independent of ellipse fit error for spheroids

and triaxial ellipsoids for the simulated σ values. This in-

dependence provides constant bounds on our camera cali-

bration method for the general case of off-nadir pointing.

Conclusion. This work provides a novel camera cali-

bration method requiring only one conic correspondence.

The one conic requirement enables in-orbit calibration

based on imaging the nearest ellipsoidal planet. For

spacecraft in Earth orbit, the target may be the Earth

or the moon. Future work will implement our method on

real images of planetary bodies and discuss the method’s

resulting performance. We anticipate using images of Sat-

urnian moons as captured by Cassini’s narrow-angle cam-

era for our analysis.
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